In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.

Velocity-vorticity geometric constraints for the energy conservation of 3D ideal incompressible fluids

Luigi C. Berselli;
2024-01-01

Abstract

In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.
2024
Berselli, Luigi C.; Sannipoli, Rossano
File in questo prodotto:
File Dimensione Formato  
arXiv2405.08461v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 189.09 kB
Formato Adobe PDF
189.09 kB Adobe PDF Visualizza/Apri
JGEA2024.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 303.94 kB
Formato Adobe PDF
303.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1234955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact