In Mediterranean countries, late-sown durum wheat (Triticum turgidum L. subsp. durum) may face waterlogging (WL) at early stages. As mitigation of waterlogging by melatonin (MT) has been poorly explored, we analyzed the effects of exogenous MT foliar application to WL-stressed durum wheat on its ecophysiological performance, growth and biomass production. Late-sown plants of a relatively tolerant cultivar (i.e., Emilio-Lepido) were subjected to two WL durations (i.e., 14 and 35 days of WL; DOW) at tillering, with or without exogenous MT application (i.e., 0 and 100 mu M). Prolonged WL reduced shoot biomass (-43%), but the application of MT mitigated this detrimental effect. Waterlogging impaired photosynthesis, reducing leaf CO2 assimilation and chlorophyll content (-61 and - 57%, at 14 and 35 DOW). In control, MT increased the photosynthetic pigments (+48%), whereas it exacerbated the decrease in photosynthesis under both WL conditions (-72%, on average). Conversely, MT reduced WL-induced oxidative damage in both shoots and roots (-25% hydrogen peroxide production), facilitating osmotic adjustments and mitigating oxidative stress. The accumulation of osmotic regulators in MT + WL plants (+140 and + 42%, in shoots and roots at 35 DOW; respectively) and mineral solutes (+140 and + 104%, on average, in shoots and roots at 14 DOW) likely mitigated WL stress, limiting the impact of oxidative stress and promoting biomass accumulation. Our results highlight the potential of MT as a bioactive compound in mitigating the adverse effects of WL on late-sown durum wheat and the importance of the complex interactions between physiological responses and environmental stressors.
Exogenous melatonin application helps late‐sown durum wheat to cope with waterlogging under Mediterranean environmental conditions
Giuseppe QuaratielloMembro del Collaboration Group
;Samuele RisoliMethodology
;Daniele AntichiMembro del Collaboration Group
;Cristina NaliSupervision
;Silvia Pampana
Writing – Original Draft Preparation
;Claudia PisuttuFormal Analysis
;Mariagrazia TonelliMembro del Collaboration Group
;
2024-01-01
Abstract
In Mediterranean countries, late-sown durum wheat (Triticum turgidum L. subsp. durum) may face waterlogging (WL) at early stages. As mitigation of waterlogging by melatonin (MT) has been poorly explored, we analyzed the effects of exogenous MT foliar application to WL-stressed durum wheat on its ecophysiological performance, growth and biomass production. Late-sown plants of a relatively tolerant cultivar (i.e., Emilio-Lepido) were subjected to two WL durations (i.e., 14 and 35 days of WL; DOW) at tillering, with or without exogenous MT application (i.e., 0 and 100 mu M). Prolonged WL reduced shoot biomass (-43%), but the application of MT mitigated this detrimental effect. Waterlogging impaired photosynthesis, reducing leaf CO2 assimilation and chlorophyll content (-61 and - 57%, at 14 and 35 DOW). In control, MT increased the photosynthetic pigments (+48%), whereas it exacerbated the decrease in photosynthesis under both WL conditions (-72%, on average). Conversely, MT reduced WL-induced oxidative damage in both shoots and roots (-25% hydrogen peroxide production), facilitating osmotic adjustments and mitigating oxidative stress. The accumulation of osmotic regulators in MT + WL plants (+140 and + 42%, in shoots and roots at 35 DOW; respectively) and mineral solutes (+140 and + 104%, on average, in shoots and roots at 14 DOW) likely mitigated WL stress, limiting the impact of oxidative stress and promoting biomass accumulation. Our results highlight the potential of MT as a bioactive compound in mitigating the adverse effects of WL on late-sown durum wheat and the importance of the complex interactions between physiological responses and environmental stressors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.