Over two billion people worldwide suffer from micronutrient deficiencies. Biofortifying vegetables can enhance micronutrient intake through the diet. This study assessed the biofortification of indoor-grown baby-leaf lettuce using aeroponics. Four experiments, two each, were conducted by adding different concentrations of Zn (from 10 to 450 mu M) or Cu (from 3 to 250 mu M) into a nutrient solution. A fifth experiment was conducted by simultaneously adding to the nutrient solution the optimal concentration of I (5 mu M) and Se (13 mu M), chosen on the basis of previous works, and the optimal concentration of Zn (250 mu M) and Cu (150 mu M), chosen on the basis of the results obtained in the first four experiments. Leaf biomass, mineral concentrations, chlorophylls, carotenoids, phenols, flavonoids, nitrates, and antioxidant capacity were measured 21 days after transplanting. Higher concentrations of Cu, Zn, I, or Se in the nutrient solution led to an increase in their concentrations in lettuce leaves, without affecting the growth or leaf quality of lettuce plants. The simultaneous application of I with the other elements induced a higher accumulation in leaves compared to when I is applied alone. One hundred grams of lettuce leaves biofortified with Se, I, Cu, and Zn would provide the 6.1%, 35.3%, and 263.0% of Adequate Intake for Cu, Se, and I, respectively, and 4.5% of Population Reference Intake for Zn. Our results suggest that simultaneously biofortifying baby-leaf lettuce with these four minerals is a practical and convenient way to integrate these micronutrients into the diet without reducing the yield or quality of lettuce.

Response of Aeroponically Cultivated Baby-Leaf Lettuce (Lactuca sativa L.) Plants with Different Zinc, Copper, Iodine, and Selenium Concentrations

Puccinelli M.
Primo
;
Vernieri P.;Carmassi G.
Penultimo
;
Incrocci L.
Ultimo
2024-01-01

Abstract

Over two billion people worldwide suffer from micronutrient deficiencies. Biofortifying vegetables can enhance micronutrient intake through the diet. This study assessed the biofortification of indoor-grown baby-leaf lettuce using aeroponics. Four experiments, two each, were conducted by adding different concentrations of Zn (from 10 to 450 mu M) or Cu (from 3 to 250 mu M) into a nutrient solution. A fifth experiment was conducted by simultaneously adding to the nutrient solution the optimal concentration of I (5 mu M) and Se (13 mu M), chosen on the basis of previous works, and the optimal concentration of Zn (250 mu M) and Cu (150 mu M), chosen on the basis of the results obtained in the first four experiments. Leaf biomass, mineral concentrations, chlorophylls, carotenoids, phenols, flavonoids, nitrates, and antioxidant capacity were measured 21 days after transplanting. Higher concentrations of Cu, Zn, I, or Se in the nutrient solution led to an increase in their concentrations in lettuce leaves, without affecting the growth or leaf quality of lettuce plants. The simultaneous application of I with the other elements induced a higher accumulation in leaves compared to when I is applied alone. One hundred grams of lettuce leaves biofortified with Se, I, Cu, and Zn would provide the 6.1%, 35.3%, and 263.0% of Adequate Intake for Cu, Se, and I, respectively, and 4.5% of Population Reference Intake for Zn. Our results suggest that simultaneously biofortifying baby-leaf lettuce with these four minerals is a practical and convenient way to integrate these micronutrients into the diet without reducing the yield or quality of lettuce.
2024
Puccinelli, M.; De Padova, A.; Vernieri, P.; Carmassi, G.; Incrocci, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1265687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact