Honeybees (Apis mellifera L.) have to face many challenges, including Varroa destructor infestation, associated with viral transmission. Oxalic acid is one of the most common treatments against Varroa. Little is known about the physiological effects of oxalic acid, especially those on honeybees' immune systems. In this study, the short-term effects (0-96 h) of oxalic acid treatment on the immune system components (i.e., glucose oxidase, phenoloxidase, glutathione S-transferase, catalase activities, and vitellogenin contents) of house bees were preliminarily investigated. Oxalic acid contents of bee bodies and haemolymphs were also measured. The results confirm that oxalic acid is constitutively present in bee haemolymphs and its concentration is not affected by treatment. At 6 h after the treatment, a maximum peak of oxalic acid content was detected on bees' bodies, which gradually decreased after that until physiological levels were reached at 48 h. In the immune system, the oxalic acid treatment determined a peak in glucose oxidase activity at 48 h, indicating a potential defence response and an increase in vitellogenin content at 24 h. No significant changes were recorded in phenoloxidase, glutathione S-transferase, and catalase activities. These results suggest a time-dependent response to oxalic acid, with potential immune system activation in treated bees.

Oxalic Acid Treatment: Short-Term Effects on Enzyme Activities, Vitellogenin Content, and Residual Oxalic Acid Content in House Bees, Apis mellifera L

Sagona S.
Primo
;
Tafi E.;Coppola F.;Boni C. B.;Orlando C.;Palego L.;Betti L.;Giannaccini G.;Felicioli A.
Ultimo
2024-01-01

Abstract

Honeybees (Apis mellifera L.) have to face many challenges, including Varroa destructor infestation, associated with viral transmission. Oxalic acid is one of the most common treatments against Varroa. Little is known about the physiological effects of oxalic acid, especially those on honeybees' immune systems. In this study, the short-term effects (0-96 h) of oxalic acid treatment on the immune system components (i.e., glucose oxidase, phenoloxidase, glutathione S-transferase, catalase activities, and vitellogenin contents) of house bees were preliminarily investigated. Oxalic acid contents of bee bodies and haemolymphs were also measured. The results confirm that oxalic acid is constitutively present in bee haemolymphs and its concentration is not affected by treatment. At 6 h after the treatment, a maximum peak of oxalic acid content was detected on bees' bodies, which gradually decreased after that until physiological levels were reached at 48 h. In the immune system, the oxalic acid treatment determined a peak in glucose oxidase activity at 48 h, indicating a potential defence response and an increase in vitellogenin content at 24 h. No significant changes were recorded in phenoloxidase, glutathione S-transferase, and catalase activities. These results suggest a time-dependent response to oxalic acid, with potential immune system activation in treated bees.
2024
Sagona, S.; Tafi, E.; Coppola, F.; Nanetti, A.; Boni, C. B.; Orlando, C.; Palego, L.; Betti, L.; Giannaccini, G.; Felicioli, A.
File in questo prodotto:
File Dimensione Formato  
insects-15-00409.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1279187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact