This paper presents an innovative approach to teaching mechatronics at the bachelor’s level, using the design and construction of an Automated Guided Vehicle (AGV) as a comprehensive example of a mechatronic system. The course, titled Laboratory of Electronic Systems, is part of a newly established professionalizing bachelor’s degree program at the University of Pisa, focused on techniques for mechanics and production. This program was developed to meet industry demands for technically skilled personnel with an engineering-related background but without the need for a full traditional engineering education. The course is designed to provide students with hands-on experience, integrating fundamental concepts from mechanical, electronic, and control engineering, along with software development. The curriculum emphasizes practical applications rather than theoretical depth, aligning with the program’s goal of preparing students for operational roles in industrial settings. We present the course structure, educational objectives, and the interdisciplinary nature of mechatronics as addressed in this teaching approach. A dedicated section outlines the critical steps involved in the AGV prototype development, highlighting practical challenges and learning opportunities. The effectiveness of the course is assessed through the evaluation of student projects, specifically via a technical report and a final discussion on the design of a mechatronic system. The results demonstrate the value of a project-based learning approach in equipping students with the practical skills and knowledge required for careers in mechatronics and industrial automation.
Prototyping of Automated Guided Vehicle for Teaching Practical Mechatronics
Ria A.
Primo
;Dini P.Secondo
;Bucchi F.Ultimo
2025-01-01
Abstract
This paper presents an innovative approach to teaching mechatronics at the bachelor’s level, using the design and construction of an Automated Guided Vehicle (AGV) as a comprehensive example of a mechatronic system. The course, titled Laboratory of Electronic Systems, is part of a newly established professionalizing bachelor’s degree program at the University of Pisa, focused on techniques for mechanics and production. This program was developed to meet industry demands for technically skilled personnel with an engineering-related background but without the need for a full traditional engineering education. The course is designed to provide students with hands-on experience, integrating fundamental concepts from mechanical, electronic, and control engineering, along with software development. The curriculum emphasizes practical applications rather than theoretical depth, aligning with the program’s goal of preparing students for operational roles in industrial settings. We present the course structure, educational objectives, and the interdisciplinary nature of mechatronics as addressed in this teaching approach. A dedicated section outlines the critical steps involved in the AGV prototype development, highlighting practical challenges and learning opportunities. The effectiveness of the course is assessed through the evaluation of student projects, specifically via a technical report and a final discussion on the design of a mechatronic system. The results demonstrate the value of a project-based learning approach in equipping students with the practical skills and knowledge required for careers in mechatronics and industrial automation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.