Brucellosis is a zoonosis that affects domestic and wild animals, causing reproductive disorders and significant economic losses in livestock. Brucella melitensis, B. abortus, and B. suis are the main agents of brucellosis in livestock and humans, thereby their control and eradication are crucial. Serological tests based on identification of antibodies against Brucella smooth lipopolysaccharides (sLPS) in the serum of infected animals are traditionally used. This approach shows two main limits: (i) tests can give false positives due to the similarity of Brucella sLPS with the LPS of other Gram-negative bacteria; (ii) antigen production represents a possible risk of zoonoses. In this work, a proteomic approach, starting from B. melitensis Brucellergene, was employed to identify possible Brucella antigenic proteins useful for a more specific and safe serological diagnosis. Four proteins binding to the infected swine serum were identified: (i) “probable sugar-binding periplasmic protein B. abortus str 2308A”; (ii) “peptide ABC transporter substrate-binding protein B. melitensis”; (iii) “GntR family transcriptional regulator B. melitensis”; (iv) “conserved hypothetical protein B. melitensis M28”. These proteins could be promising specific antigens for serological investigations in swine. In the near future, these antigenic proteins could be synthesized in vitro and used to produce a safer and more specific diagnostic kit.

Preliminary Investigation Towards a Safety Tool for Swine Brucellosis Diagnosis by a Proteomic Approach Within the One-Health Framework

Sagona S.
Co-primo
;
Bertelloni F.
Co-primo
;
Turchi B.
Secondo
;
Fratini F.;Felicioli A.
Penultimo
;
Cerri D.
Ultimo
2025-01-01

Abstract

Brucellosis is a zoonosis that affects domestic and wild animals, causing reproductive disorders and significant economic losses in livestock. Brucella melitensis, B. abortus, and B. suis are the main agents of brucellosis in livestock and humans, thereby their control and eradication are crucial. Serological tests based on identification of antibodies against Brucella smooth lipopolysaccharides (sLPS) in the serum of infected animals are traditionally used. This approach shows two main limits: (i) tests can give false positives due to the similarity of Brucella sLPS with the LPS of other Gram-negative bacteria; (ii) antigen production represents a possible risk of zoonoses. In this work, a proteomic approach, starting from B. melitensis Brucellergene, was employed to identify possible Brucella antigenic proteins useful for a more specific and safe serological diagnosis. Four proteins binding to the infected swine serum were identified: (i) “probable sugar-binding periplasmic protein B. abortus str 2308A”; (ii) “peptide ABC transporter substrate-binding protein B. melitensis”; (iii) “GntR family transcriptional regulator B. melitensis”; (iv) “conserved hypothetical protein B. melitensis M28”. These proteins could be promising specific antigens for serological investigations in swine. In the near future, these antigenic proteins could be synthesized in vitro and used to produce a safer and more specific diagnostic kit.
2025
Sagona, S.; Bertelloni, F.; Turchi, B.; Roncada, P.; Tafi, E.; Fratini, F.; Felicioli, A.; Cerri, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1307768
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact