In this work, by-products from insect farming valorisation are proposed as filler in biocomposite production, with relevant biodegradation in compost and valuable thermal and mechanical properties. Thus, we report on the preparation, properties, and biodegradability in compost of composites based on Poly(butylene succinate-co-adipate) (PBSA) and Poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHB-HV) (70/30% by weight as a polymeric matrix, with filler from insect exoskeleton (I) up to 15% by weight in the 85% by weight of polymeric matrix. The insect biomass was a by-product obtained from grinding the insect’s post-protein extraction dry exoskeleton. The composites were produced by melt extrusion and characterised in terms of processability, thermal stability, morphology, and mechanical properties to select formulations optimised for injection moulding processing. The optimised composites (PBSA/PHB-HV) with 15% by weight of filler were used to produce pots by injection moulding on an industrial scale extruder. Selected formulations were tested for biodegradability in compost, which evidenced the relevance of insect exoskeleton filler for meeting the requirements for the disintegration of rigid items. This paper presents a sustainable option for valorising the insect exoskeleton residue that remained after protein extraction for animal feed production and reducing the production cost of PBSA/PHB-HV-based composites without compromising the mechanical properties for application as rigid items in agriculture, all while promoting biodegradability in industrial compost. © 2025 by the authors.
Valorising Insect Exoskeleton Biomass Filler in Bioplastic-Based Eco-Friendly Rigid Items for Agriculture Applications
Norma Mallegni
;Vito Gigante;Marco Sandroni;Neetu Malik;Miriam Cappello;Damiano Rossi;Sara Filippi;Andrea Lazzeri;Maurizia Seggiani;Patrizia Cinelli
2025-01-01
Abstract
In this work, by-products from insect farming valorisation are proposed as filler in biocomposite production, with relevant biodegradation in compost and valuable thermal and mechanical properties. Thus, we report on the preparation, properties, and biodegradability in compost of composites based on Poly(butylene succinate-co-adipate) (PBSA) and Poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHB-HV) (70/30% by weight as a polymeric matrix, with filler from insect exoskeleton (I) up to 15% by weight in the 85% by weight of polymeric matrix. The insect biomass was a by-product obtained from grinding the insect’s post-protein extraction dry exoskeleton. The composites were produced by melt extrusion and characterised in terms of processability, thermal stability, morphology, and mechanical properties to select formulations optimised for injection moulding processing. The optimised composites (PBSA/PHB-HV) with 15% by weight of filler were used to produce pots by injection moulding on an industrial scale extruder. Selected formulations were tested for biodegradability in compost, which evidenced the relevance of insect exoskeleton filler for meeting the requirements for the disintegration of rigid items. This paper presents a sustainable option for valorising the insect exoskeleton residue that remained after protein extraction for animal feed production and reducing the production cost of PBSA/PHB-HV-based composites without compromising the mechanical properties for application as rigid items in agriculture, all while promoting biodegradability in industrial compost. © 2025 by the authors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.