A strategy for developing accurate quantitative structure-activity relationship models enabling predictions of biological properties, when suitable knowledge concerning both ligands and biological target is available, was tested on a data set where molecules are characterized by high structural diversity. Such a strategy was applied to human ether-a-go-go-related gene K(+) channel inhibition and consists of a combination of ligand- and structure-based approaches, which can be carried out whenever the three-dimensional structure of the target macromolecule is known or may be modeled with good accuracy. Molecular conformations of ligands were obtained by means of molecular docking, performed in a previously built theoretical model of the channel pore, so that descriptors depending upon the three-dimensional molecular structure were properly computed. A modification of the directed sphere-exclusion algorithm was developed and exploited to properly splitting the whole dataset into Training/Test set pairs. Molecular descriptors, computed by means of the codessa program, were used for the search of reliable quantitative structure-activity relationship models that were subsequently identified through a rigorous validation analysis. Finally, pIC(50) values of a prediction set, external to the initial dataset, were predicted and the results confirmed the high predictive power of the model within a quite wide chemical space.

QSAR models for predicting biological properties, developed by combining structure- and ligand-based approaches: an application to the hERG potassium channel inhibition

COI, ALESSIO;MASSARELLI, ILARIA;SARACENO, MARILENA;TESTAI, LARA;CALDERONE, VINCENZO;BIANUCCI, ANNA MARIA PAOLA
2009-01-01

Abstract

A strategy for developing accurate quantitative structure-activity relationship models enabling predictions of biological properties, when suitable knowledge concerning both ligands and biological target is available, was tested on a data set where molecules are characterized by high structural diversity. Such a strategy was applied to human ether-a-go-go-related gene K(+) channel inhibition and consists of a combination of ligand- and structure-based approaches, which can be carried out whenever the three-dimensional structure of the target macromolecule is known or may be modeled with good accuracy. Molecular conformations of ligands were obtained by means of molecular docking, performed in a previously built theoretical model of the channel pore, so that descriptors depending upon the three-dimensional molecular structure were properly computed. A modification of the directed sphere-exclusion algorithm was developed and exploited to properly splitting the whole dataset into Training/Test set pairs. Molecular descriptors, computed by means of the codessa program, were used for the search of reliable quantitative structure-activity relationship models that were subsequently identified through a rigorous validation analysis. Finally, pIC(50) values of a prediction set, external to the initial dataset, were predicted and the results confirmed the high predictive power of the model within a quite wide chemical space.
2009
Coi, Alessio; Massarelli, Ilaria; Saraceno, Marilena; Niccolò, Carli; Testai, Lara; Calderone, Vincenzo; Bianucci, ANNA MARIA PAOLA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/131116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact