According to European Union’s Habitat Directive, habitat monitoring plays a critical role in response to the escalating problems posed by biodiversity loss and environmental degradation. Scree habitats, hosting unique and often endangered species, face severe threats from climate change due to their high-altitude nature. Traditionally, their monitoring has required highly skilled scientists to conduct extensive fieldwork in remote, potentially hazardous locations, making the process resource-intensive and time-consuming. This article presents a novel approach for scree habitat monitoring using a legged robot to assist botanists in data collection and species identification. Specifically, we deployed the ANYmal C robot in Italian Alpine bio-region in two field campaigns spanning two years and leveraged deep learning to detect and classify key plant species of interest. Our results demonstrate that agile legged robots can navigate challenging terrains and increase the frequency and efficiency of scree monitoring. When paired with traditional phytosociological surveys performed by botanists, this robotics-assisted protocol not only streamlines field operations but also enhances data acquisition, storage, and usage. The outcomes of this research contribute to the evolving landscape of robotics in environmental science, paving the way for a more comprehensive and sustainable approach to habitat monitoring and preservation.

Botany Meets Robotics in Alpine Scree Monitoring

Davide De Benedittis;Giovanni Di Lorenzo;Franco Angelini;Manolo Garabini
2025-01-01

Abstract

According to European Union’s Habitat Directive, habitat monitoring plays a critical role in response to the escalating problems posed by biodiversity loss and environmental degradation. Scree habitats, hosting unique and often endangered species, face severe threats from climate change due to their high-altitude nature. Traditionally, their monitoring has required highly skilled scientists to conduct extensive fieldwork in remote, potentially hazardous locations, making the process resource-intensive and time-consuming. This article presents a novel approach for scree habitat monitoring using a legged robot to assist botanists in data collection and species identification. Specifically, we deployed the ANYmal C robot in Italian Alpine bio-region in two field campaigns spanning two years and leveraged deep learning to detect and classify key plant species of interest. Our results demonstrate that agile legged robots can navigate challenging terrains and increase the frequency and efficiency of scree monitoring. When paired with traditional phytosociological surveys performed by botanists, this robotics-assisted protocol not only streamlines field operations but also enhances data acquisition, storage, and usage. The outcomes of this research contribute to the evolving landscape of robotics in environmental science, paving the way for a more comprehensive and sustainable approach to habitat monitoring and preservation.
2025
De Benedittis, Davide Davide; Di Lorenzo, Giovanni; Angelini, Franco; Valle, Barbara; Serena Borgatti, Marina; Remagnino, Paolo; Caccianiga, Marco; Ga...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1337737
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact