The development of efficient circularly polarized electrochemiluminescence (CP-ECL) probes is still at its infancy and examples are still very limited. Yet, their achievement would enable gathering a readout that carries privileged information on the probe's chiral environment by monitoring luminescence polarization bias with high signal-to-noise ratio. Notwithstanding, this is a highly challenging task and requires judicious chemical engineering of chiral ECL-active emitters. Herein, we aim at expanding the palette of CP-ECL luminophores by presenting a novel class of enantiopure heterobinuclear Ir(III)–Au(I) complexes, which are investigated thoroughly by means of chemical, structural, and (chiro-)optical techniques. The ground and excited state properties are also elucidated by using density functional theory (DFT) approaches including spin-orbital coupling (SOC) perturbation. The chiral-at-metal complexes display luminescence with a polarization bias of the emitted light that is function of the helical arrangement of the coordination sphere around the Ir(III) center. Overall, the photo- and electro-active complexes unraveled in this work combine unparallelly high photoluminescence quantum yield in the orange region, excellent circularly polarized luminescence (CPL) brightness up to 4.5 M−1 cm−1 with a notable ECL activity. Finally, these features provide emitters with CP-ECL efficiency that encompass remarkably by a factor 3.5 that of the well-known benchmark tris-(2,2′-bipyridyl)ruthenium(II).

Bright Circularly Polarized Electrochemiluminescence from Heterobinuclear IrIII–AuI Enantiomers

Arrico, Lorenzo;Zinna, Francesco;Di Bari, Lorenzo
;
Mauro, Matteo
Ultimo
2025-01-01

Abstract

The development of efficient circularly polarized electrochemiluminescence (CP-ECL) probes is still at its infancy and examples are still very limited. Yet, their achievement would enable gathering a readout that carries privileged information on the probe's chiral environment by monitoring luminescence polarization bias with high signal-to-noise ratio. Notwithstanding, this is a highly challenging task and requires judicious chemical engineering of chiral ECL-active emitters. Herein, we aim at expanding the palette of CP-ECL luminophores by presenting a novel class of enantiopure heterobinuclear Ir(III)–Au(I) complexes, which are investigated thoroughly by means of chemical, structural, and (chiro-)optical techniques. The ground and excited state properties are also elucidated by using density functional theory (DFT) approaches including spin-orbital coupling (SOC) perturbation. The chiral-at-metal complexes display luminescence with a polarization bias of the emitted light that is function of the helical arrangement of the coordination sphere around the Ir(III) center. Overall, the photo- and electro-active complexes unraveled in this work combine unparallelly high photoluminescence quantum yield in the orange region, excellent circularly polarized luminescence (CPL) brightness up to 4.5 M−1 cm−1 with a notable ECL activity. Finally, these features provide emitters with CP-ECL efficiency that encompass remarkably by a factor 3.5 that of the well-known benchmark tris-(2,2′-bipyridyl)ruthenium(II).
2025
Ballerini, Lavinia; Liu, Miaoxia; Arrico, Lorenzo; Voci, Silvia; Gourlaouen, Christophe; Daniel, Chantal; César, Vincent; Bellemin‐laponnaz, Stéphane;...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1340247
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact