We investigated dielectric relaxation of a tri-propylene glycol system under high compression. By increasing temperature and pressure we observed that a new relaxation process emerges from the low frequency tail of the structural peak. This new peak starts to be visible at about 0.5 GPa and becomes clearly evident at 1.7 GPa. However, this additional peak merges again with the structural one as the glass transition is approached, since it has a weaker temperature dependence. This finding enriches the relaxation scenario of molecular glass formers confirming that the application of very high hydrostatic pressure can favor the detection of new relaxation or otherwise unresolved processes in supercooled liquid systems. (C) 2005 American Institute of Physics.
Emergence of a new feature in the high pressure-high temperature relaxation spectrum of tri-propylene glycol
CAPACCIOLI, SIMONE;LUCCHESI, MAURO;ROLLA, PIERANGELO;
2005-01-01
Abstract
We investigated dielectric relaxation of a tri-propylene glycol system under high compression. By increasing temperature and pressure we observed that a new relaxation process emerges from the low frequency tail of the structural peak. This new peak starts to be visible at about 0.5 GPa and becomes clearly evident at 1.7 GPa. However, this additional peak merges again with the structural one as the glass transition is approached, since it has a weaker temperature dependence. This finding enriches the relaxation scenario of molecular glass formers confirming that the application of very high hydrostatic pressure can favor the detection of new relaxation or otherwise unresolved processes in supercooled liquid systems. (C) 2005 American Institute of Physics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.