This paper deals with design and implementation of innovative haptic interfaces based on Magnetorheological fluids (MRFs). This pioneering research work consists in developing 2D and quasi-3D MRF-based devices capable of suitably energizing the fluid with a magnetic field in order to build figures which can be directly squeezed by hands. These devices are able to properly create a distribution of magnetic field over time and space inducing the fluid to assume desired shape and compliance. We implemented different prototypes whose synthesis and design phase, here described in detail, was prepared by preliminary simulations obtained by means of software based on a 3D Finite Element code. In this way, both magnetic field and shear stress profiles inside the fluid can be carefully predicted. Finally, performance of these devices was evaluated and assessed.
Electromagnetic Modeling and Design of Haptic Interfaces Prototypes based on MagnetoRheological Fluids
RIZZO, ROCCO;SCILINGO, ENZO PASQUALE;RAUGI, MARCO;BICCHI, ANTONIO
2007-01-01
Abstract
This paper deals with design and implementation of innovative haptic interfaces based on Magnetorheological fluids (MRFs). This pioneering research work consists in developing 2D and quasi-3D MRF-based devices capable of suitably energizing the fluid with a magnetic field in order to build figures which can be directly squeezed by hands. These devices are able to properly create a distribution of magnetic field over time and space inducing the fluid to assume desired shape and compliance. We implemented different prototypes whose synthesis and design phase, here described in detail, was prepared by preliminary simulations obtained by means of software based on a 3D Finite Element code. In this way, both magnetic field and shear stress profiles inside the fluid can be carefully predicted. Finally, performance of these devices was evaluated and assessed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.