We have conducted a UV-exclusion experiment in which plants grew at 35 or 100% sunlight irradiance, in the presence or in the absence of UV-irradiance, with the aim of exploring the effects of visible-light and UV-irradiance on the physiology and biochemistry of Ligustrum vulgare, a world-wide distributed shrub, which inhabits partially shaded areas of the Mediterranean Basin. We measured relevant physiological and biochemical traits, namely: (i) leaf expansion and leaf area expansion rates; (ii) the net CO 2 assimilation rate and the PSII photochemistry; (iii) the concentrations of soluble carbohydrates and photosynthetic pigments; (iv) the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX); (v) the share of assimilated carbon recovered in individual polyphenols; (vi) the leaf oxidative damage. UV-irradiance had a relatively minor impact on most examined traits, as compared with the effect of visible-light irradiance. UV-induced variations in plant growth and net CO 2 assimilation rate were minor. Maximal (F v/F m) and actual (Φ PSII) efficiencies of PSII photochemistry varied to a greater extent because of visible-light than UV-irradiance, and full-sun leaves had smaller F v/F m and Φ PSII than the partially shaded ones. The conversion state of violaxanthin-cycle pigments was either largely increased by visible-light or unaffected by UV-radiation, as also observed for the activities of antioxidant enzymes (with the exception of SOD). In contrast, UV-radiation greatly enhanced the allocation of carbon to polyphenols, particularly flavonoids, irrespective of visible-light irradiance. Lipid peroxidation and protein oxidation were superior in UV-treated leaves growing under partial shading, whereas leaf oxidative damage was unaffected by UV-radiation in full-sun leaves. We explain the differential UV-induced oxidative damage in partially shaded or full-sun leaves, on the basis of visible-light-induced biochemical adjustments, aimed at avoiding the generation and reducing reactive oxygen forms (ROS). These adjustments included an increase in (1) violaxanthin-cycle pigments, particularly antheraxanthin and zeaxanthin, relative to chlorophyll; (2) antioxidant enzyme activities and flavonoid concentration, which may effectively inhibit the generation and quench ROS once formed.

The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance

GUIDI, LUCIA;REMORINI, DAMIANO;
2011

Abstract

We have conducted a UV-exclusion experiment in which plants grew at 35 or 100% sunlight irradiance, in the presence or in the absence of UV-irradiance, with the aim of exploring the effects of visible-light and UV-irradiance on the physiology and biochemistry of Ligustrum vulgare, a world-wide distributed shrub, which inhabits partially shaded areas of the Mediterranean Basin. We measured relevant physiological and biochemical traits, namely: (i) leaf expansion and leaf area expansion rates; (ii) the net CO 2 assimilation rate and the PSII photochemistry; (iii) the concentrations of soluble carbohydrates and photosynthetic pigments; (iv) the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX); (v) the share of assimilated carbon recovered in individual polyphenols; (vi) the leaf oxidative damage. UV-irradiance had a relatively minor impact on most examined traits, as compared with the effect of visible-light irradiance. UV-induced variations in plant growth and net CO 2 assimilation rate were minor. Maximal (F v/F m) and actual (Φ PSII) efficiencies of PSII photochemistry varied to a greater extent because of visible-light than UV-irradiance, and full-sun leaves had smaller F v/F m and Φ PSII than the partially shaded ones. The conversion state of violaxanthin-cycle pigments was either largely increased by visible-light or unaffected by UV-radiation, as also observed for the activities of antioxidant enzymes (with the exception of SOD). In contrast, UV-radiation greatly enhanced the allocation of carbon to polyphenols, particularly flavonoids, irrespective of visible-light irradiance. Lipid peroxidation and protein oxidation were superior in UV-treated leaves growing under partial shading, whereas leaf oxidative damage was unaffected by UV-radiation in full-sun leaves. We explain the differential UV-induced oxidative damage in partially shaded or full-sun leaves, on the basis of visible-light-induced biochemical adjustments, aimed at avoiding the generation and reducing reactive oxygen forms (ROS). These adjustments included an increase in (1) violaxanthin-cycle pigments, particularly antheraxanthin and zeaxanthin, relative to chlorophyll; (2) antioxidant enzyme activities and flavonoid concentration, which may effectively inhibit the generation and quench ROS once formed.
Guidi, Lucia; Degl'Innocenti, E.; Remorini, Damiano; Biricolti, S.; Fini, A.; Ferrini, F.; Nicese, F. P.; Tattini, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/199951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact