This paper presents a novel methodology to restore the designed functional properties of hypoid gear sets whose teeth deviate from their theoretical models due to inevitable imperfections in the machining process. Corrective actions are applied to one member only: the pinion. The concept of ease-off is profitably employed as the true means to evaluate the contact properties of a gear set as a whole. It is indeed the sameness of the designed and the real ease-off that ultimately renders two gear sets equivalent in terms of contact pattern, transmission error and vibrational properties. On this basis, gear deviations can be mapped into equivalent pinion deviations, added to those of the pinion itself, and cumulatively compensated for by applying corrective machine-tool settings to the pinion. The gear member is perfect “as is”. The ensuing advantages are highlighted in the paper. The method is illustrated with a real-life numerical example. It demonstrates that, applying corrective (i) machine-tool settings and (ii) machine settings only to the pinion grinding process, the originally designed transmission properties can be restored with a high level of accuracy.

Ease-off based compensation of tooth surface deviations for spiral bevel and hypoid gears: only the pinion needs corrections

ARTONI, ALESSIO;GABICCINI, MARCO;
2013-01-01

Abstract

This paper presents a novel methodology to restore the designed functional properties of hypoid gear sets whose teeth deviate from their theoretical models due to inevitable imperfections in the machining process. Corrective actions are applied to one member only: the pinion. The concept of ease-off is profitably employed as the true means to evaluate the contact properties of a gear set as a whole. It is indeed the sameness of the designed and the real ease-off that ultimately renders two gear sets equivalent in terms of contact pattern, transmission error and vibrational properties. On this basis, gear deviations can be mapped into equivalent pinion deviations, added to those of the pinion itself, and cumulatively compensated for by applying corrective machine-tool settings to the pinion. The gear member is perfect “as is”. The ensuing advantages are highlighted in the paper. The method is illustrated with a real-life numerical example. It demonstrates that, applying corrective (i) machine-tool settings and (ii) machine settings only to the pinion grinding process, the originally designed transmission properties can be restored with a high level of accuracy.
2013
Artoni, Alessio; Gabiccini, Marco; Kolivand, M.
File in questo prodotto:
File Dimensione Formato  
200335.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
200335_2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/200355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 74
social impact