The dynamics of the epoxy resin phenyl glycidyl ether, a fragile glass-forming liquid, is investigated in the liquid and supercooled phases by time-resolved optical Kerr effect experiment with an heterodyne detection technique. We tested the mode-coupling theory and found that the predicted dynamic scenario allows to reproduce properly the measured signal, for t>1 ps, in the whole temperature interval investigated. Furthermore, the values of T(c) and lambda, obtained from the analysis of three different and independent dynamic regimes (alpha regime, von Schweidler, beta regime), are in remarkable agreement. Moreover, relaxation times obtained from optical Kerr effect and dielectric spectroscopy measurements are compared. The two time scales differ only for a constant factor in the whole temperature interval investigated.
Relaxation processes in an epoxy resin studied by time-resolved optical Kerr effect
CAPACCIOLI, SIMONE;ROLLA, PIERANGELO
2002-01-01
Abstract
The dynamics of the epoxy resin phenyl glycidyl ether, a fragile glass-forming liquid, is investigated in the liquid and supercooled phases by time-resolved optical Kerr effect experiment with an heterodyne detection technique. We tested the mode-coupling theory and found that the predicted dynamic scenario allows to reproduce properly the measured signal, for t>1 ps, in the whole temperature interval investigated. Furthermore, the values of T(c) and lambda, obtained from the analysis of three different and independent dynamic regimes (alpha regime, von Schweidler, beta regime), are in remarkable agreement. Moreover, relaxation times obtained from optical Kerr effect and dielectric spectroscopy measurements are compared. The two time scales differ only for a constant factor in the whole temperature interval investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.