We describe a simple but effective strategy for imparting light-responsive peculiarity to polystyrene films. A pH-sensitive fluorescent dye having the electron-poor pyridine nucleus as a key structural feature was synthesized and dispersed at low loadings (0.2−0.5 wt %) in a PS matrix. Once light irradiation in the near-UV range was sent to PS/dye films, PS photooxidation likely occurred at the film surface with the formation of carboxylic compounds. These species locally promoted dye protonation, thus, yielding a clear change of the film emission from blue to green. This study opens the door to a wide range of light-responsive materials from easily accessible polymers, enabling the use of UV light as an effective trigger for smart materials and devices.
Light-Responsive Polystyrene Films Doped with Tailored Heteroaromatic-Based Fluorophores
LESSI, MARCO;BELLINA, FABIO;RUGGERI, GIACOMO;PUCCI, ANDREA
2013-01-01
Abstract
We describe a simple but effective strategy for imparting light-responsive peculiarity to polystyrene films. A pH-sensitive fluorescent dye having the electron-poor pyridine nucleus as a key structural feature was synthesized and dispersed at low loadings (0.2−0.5 wt %) in a PS matrix. Once light irradiation in the near-UV range was sent to PS/dye films, PS photooxidation likely occurred at the film surface with the formation of carboxylic compounds. These species locally promoted dye protonation, thus, yielding a clear change of the film emission from blue to green. This study opens the door to a wide range of light-responsive materials from easily accessible polymers, enabling the use of UV light as an effective trigger for smart materials and devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.