Bacterial and fungal community dynamics during microbially-enhanced composting of olive mill solid waste (wet husk), used as a sole raw material, were analysed in a process carried out at industrial pilot and at farm level by the PCR-DGGE profiling of the 16 and 26S rRNA genes. The use of microbial starters enhanced the biotransformation process leading to an earlier and increased level of bacterial diversity. The bacterial community showed a change within 15 days during the first phases of composting. Without microbial starters bacterial biodiversity increased within 60 days. Moreover, the thermophilic phase was characterized by the highest bacterial biodiversity. By contrast, the biodiversity of fungal communities in the piles composted with the starters decreased during the thermophilic phase. The biodiversity of the microbial populations, along with physico-chemical traits, evolved similarly at industrial pilot and farm level, showing different maturation times.

Microbially-enhanced composting of olive mill solid waste (wet husk): Bacterial and fungal community dynamics at industrial pilot and farm level.

AGNOLUCCI, MONICA;CRISTANI, CATERINA;BATTINI, FABIO;PALLA, MICHELA;CARDELLI, ROBERTO;SAVIOZZI, ALESSANDRO;NUTI, MARCO
2013

Abstract

Bacterial and fungal community dynamics during microbially-enhanced composting of olive mill solid waste (wet husk), used as a sole raw material, were analysed in a process carried out at industrial pilot and at farm level by the PCR-DGGE profiling of the 16 and 26S rRNA genes. The use of microbial starters enhanced the biotransformation process leading to an earlier and increased level of bacterial diversity. The bacterial community showed a change within 15 days during the first phases of composting. Without microbial starters bacterial biodiversity increased within 60 days. Moreover, the thermophilic phase was characterized by the highest bacterial biodiversity. By contrast, the biodiversity of fungal communities in the piles composted with the starters decreased during the thermophilic phase. The biodiversity of the microbial populations, along with physico-chemical traits, evolved similarly at industrial pilot and farm level, showing different maturation times.
Agnolucci, Monica; Cristani, Caterina; Battini, Fabio; Palla, Michela; Cardelli, Roberto; Saviozzi, Alessandro; Nuti, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/209161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact