We prove decay and scattering of solutions of the nonlinear Schrödinger equation (NLS) in ℝ with pure power nonlinearity with exponent 3<p<5 when the initial datum is small in Σ (bounded energy and variance) in the presence of a linear inhomogeneity represented by a linear potential that is a real-valued Schwarz function. We assume absence of discrete modes. The proof is analogous to the one for the translation-invariant equation. In particular, we find appropriate operators commuting with the linearization.

Decay and Scattering of Small Solutions of Pure Power NLS in R with p > 3 and with a Potential

GUEORGUIEV, VLADIMIR SIMEONOV;VISCIGLIA, NICOLA
2014

Abstract

We prove decay and scattering of solutions of the nonlinear Schrödinger equation (NLS) in ℝ with pure power nonlinearity with exponent 3
S., Cuccagna; Gueorguiev, VLADIMIR SIMEONOV; Visciglia, Nicola
File in questo prodotto:
File Dimensione Formato  
cpam2012_Cuccagna_Georgiev_Visciglia.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 322.61 kB
Formato Adobe PDF
322.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/214348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact