We consider a shape optimization problem $$\min\big\{E(\Gamma):\ \Gamma\in\mathcal{A},\ \mathcal{H}^1(\Gamma)=l\ \big\},$$ where $\mathcal{A}$ is an admissible set of one dimensional objects (sets of finite Hausdorff measure in $\R^d$ or metric graphs) connecting some prescribed set of points $\mathcal{D}=\{D_1,\dots,D_k\}\subset\R^d$. The cost functional $E$ is the Dirichlet Energy of $\Gamma$ defined throughout the Sobolev functions on $\Gamma$ vanishing on the points $D_i$. We analyze the existence of a solution in both the family of rectifiable sets and that of metric graphs. Ar the end, several explicit examples are discussed.

Shape optimization problems for metric graphs

BUTTAZZO, GIUSEPPE;Velichkov B.
2014

Abstract

We consider a shape optimization problem $$\min\big\{E(\Gamma):\ \Gamma\in\mathcal{A},\ \mathcal{H}^1(\Gamma)=l\ \big\},$$ where $\mathcal{A}$ is an admissible set of one dimensional objects (sets of finite Hausdorff measure in $\R^d$ or metric graphs) connecting some prescribed set of points $\mathcal{D}=\{D_1,\dots,D_k\}\subset\R^d$. The cost functional $E$ is the Dirichlet Energy of $\Gamma$ defined throughout the Sobolev functions on $\Gamma$ vanishing on the points $D_i$. We analyze the existence of a solution in both the family of rectifiable sets and that of metric graphs. Ar the end, several explicit examples are discussed.
Buttazzo, Giuseppe; Ruffini, B.; Velichkov, B.
File in questo prodotto:
File Dimensione Formato  
cocv130050.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 502.45 kB
Formato Adobe PDF
502.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/227536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact