Safe physical human-robot interaction, conservation of energy, and adaptability are the main robotic applications that prompted the development of a number of variable stiffness actuators (VSAs). Implemented in a variety of ways, they use various technologies and feature the most diverse mechanical solutions, all of which share a fundamentally unavoidable nonlinear behavior. The control schemes proposed for these actuators typically aim at independent control of the position of the link and its stiffness. Although effective feedback control schemes using position and force sensors are commonplace in robotics, control of stiffness is at present completely open loop: The stiffness is inferred from the mathematical model of the actuator. We consider here the problem of estimating the nonlinear stiffness of VSA in agonistic-antagonistic configuration. We propose an algorithm based on modulating functions that allow us to avoid the need for numerical derivative and for which the tuning is then very simple. An analysis of the error demonstrates the convergence. Simulations are provided, and the algorithm is validated on experimental data.

A stiffness estimator for AA-VSA devices

GRIOLI, GIORGIO;BICCHI, ANTONIO
2014-01-01

Abstract

Safe physical human-robot interaction, conservation of energy, and adaptability are the main robotic applications that prompted the development of a number of variable stiffness actuators (VSAs). Implemented in a variety of ways, they use various technologies and feature the most diverse mechanical solutions, all of which share a fundamentally unavoidable nonlinear behavior. The control schemes proposed for these actuators typically aim at independent control of the position of the link and its stiffness. Although effective feedback control schemes using position and force sensors are commonplace in robotics, control of stiffness is at present completely open loop: The stiffness is inferred from the mathematical model of the actuator. We consider here the problem of estimating the nonlinear stiffness of VSA in agonistic-antagonistic configuration. We propose an algorithm based on modulating functions that allow us to avoid the need for numerical derivative and for which the tuning is then very simple. An analysis of the error demonstrates the convergence. Simulations are provided, and the algorithm is validated on experimental data.
2014
T., Menard; Grioli, Giorgio; Bicchi, Antonio
File in questo prodotto:
File Dimensione Formato  
2014_MGB_TRO.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/506873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact