Cryogenic magic angle spinning makes it possible to obtain the NMR spectra of solids at temperatures low enough to freeze out most molecular motions. We have applied cryogenic magic angle spinning NMR to a crystalline small-molecule solid (ibuprofen sodium salt), which displays a variety of molecular dynamics. Magic angle 13C NMR spectra are shown for a wide range of temperatures, including in the cryogenic regime down to 20 K. The hydrophobic and hydrophilic regions of the molecular structure display different behavior in the cryogenic regime, with the hydrophilic region remaining well-structured, while the hydrophobic region exhibits a broad frozen conformational distribution.
Freezing of Molecular Motions Probed by Cryogenic Magic Angle Spinning NMR
CARIGNANI, ELISA;BORSACCHI, SILVIA;MENNUCCI, BENEDETTA;GEPPI, MARCO;
2014-01-01
Abstract
Cryogenic magic angle spinning makes it possible to obtain the NMR spectra of solids at temperatures low enough to freeze out most molecular motions. We have applied cryogenic magic angle spinning NMR to a crystalline small-molecule solid (ibuprofen sodium salt), which displays a variety of molecular dynamics. Magic angle 13C NMR spectra are shown for a wide range of temperatures, including in the cryogenic regime down to 20 K. The hydrophobic and hydrophilic regions of the molecular structure display different behavior in the cryogenic regime, with the hydrophilic region remaining well-structured, while the hydrophobic region exhibits a broad frozen conformational distribution.File | Dimensione | Formato | |
---|---|---|---|
2014-JPCL5-512.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.