Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reproduction, a new family of functions is obtained. This new family is here constructed and called the family of exponential pseudo-splines. It is the nonstationary counterpart of (polynomial) pseudo-splines and includes exponential B-splines as a special subclass. In this work we provide a computational strategy for deriving the explicit expression of the Laurent polynomial sequence that identifies the family of exponential pseudo-spline nonstationary subdivision schemes. For this family we study its symmetry properties and perform its convergence and regularity analysis. Finally, we also show that the family of primal exponential pseudo-splines fills in the gap between exponential B-splines and interpolatory cardinal functions. This extends the analogous property of primal pseudo-spline stationary subdivision schemes.

Exponential Pseudo-Splines: looking beyond Exponential B-splines

GEMIGNANI, LUCA;
2016-01-01

Abstract

Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reproduction, a new family of functions is obtained. This new family is here constructed and called the family of exponential pseudo-splines. It is the nonstationary counterpart of (polynomial) pseudo-splines and includes exponential B-splines as a special subclass. In this work we provide a computational strategy for deriving the explicit expression of the Laurent polynomial sequence that identifies the family of exponential pseudo-spline nonstationary subdivision schemes. For this family we study its symmetry properties and perform its convergence and regularity analysis. Finally, we also show that the family of primal exponential pseudo-splines fills in the gap between exponential B-splines and interpolatory cardinal functions. This extends the analogous property of primal pseudo-spline stationary subdivision schemes.
2016
Conti, Costanza; Gemignani, Luca; Romani, Lucia
File in questo prodotto:
File Dimensione Formato  
CGR_3dic15.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 500.91 kB
Formato Adobe PDF
500.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/774984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact