This paper develops power control algorithms for energy efficiency (EE) maximization (measured in bit/Joule) in wireless networks. Unlike previous related works, minimum-rate constraints are imposed and the signal-to-interference-plus-noise ratio takes a more general expression, which allows one to encompass some of the most promising 5G candidate technologies. Both network-centric and user-centric EE maximizations are considered. In the network-centric scenario, the maximization of the global EE and the minimum EE of the network is performed. Unlike previous contributions, we develop centralized algorithms that are guaranteed to converge, with affordable computational complexity, to a Karush–Kuhn–Tucker point of the considered non-convex optimization problems. Moreover, closed-form feasibility conditions are derived. In the user-centric scenario, game theory is used to study the equilibria of the network and to derive convergent power control algorithms, which can be implemented in a fully decentralized fashion. Both scenarios above are studied under the assumption that single or multiple resource blocks are employed for data transmission. Numerical results assess the performance of the proposed solutions, analyzing the impact of minimum-rate constraints, and comparing the network-centric and user-centric approaches.

Energy-Efficient Power Control: A Look at 5G Wireless Technologies

SANGUINETTI, LUCA;BACCI, GIACOMO;
2016-01-01

Abstract

This paper develops power control algorithms for energy efficiency (EE) maximization (measured in bit/Joule) in wireless networks. Unlike previous related works, minimum-rate constraints are imposed and the signal-to-interference-plus-noise ratio takes a more general expression, which allows one to encompass some of the most promising 5G candidate technologies. Both network-centric and user-centric EE maximizations are considered. In the network-centric scenario, the maximization of the global EE and the minimum EE of the network is performed. Unlike previous contributions, we develop centralized algorithms that are guaranteed to converge, with affordable computational complexity, to a Karush–Kuhn–Tucker point of the considered non-convex optimization problems. Moreover, closed-form feasibility conditions are derived. In the user-centric scenario, game theory is used to study the equilibria of the network and to derive convergent power control algorithms, which can be implemented in a fully decentralized fashion. Both scenarios above are studied under the assumption that single or multiple resource blocks are employed for data transmission. Numerical results assess the performance of the proposed solutions, analyzing the impact of minimum-rate constraints, and comparing the network-centric and user-centric approaches.
2016
Zappone, Alessio; Sanguinetti, Luca; Bacci, Giacomo; Jorswieck, Eduard; Debbah, Merouane
File in questo prodotto:
File Dimensione Formato  
camera_ready_TSP.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 532.02 kB
Formato Adobe PDF
532.02 kB Adobe PDF Visualizza/Apri
07328326.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/782021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 227
  • ???jsp.display-item.citation.isi??? 212
social impact