Human recombinant carbonyl reductase 1 (E.C. 1.1.1.184, hCBR1) is shown to efficiently act as aldehyde reductase on glutathionylated alkanals, namely 3-glutathionyl-4-hydroxynonanal (GSHNE), 3-glutathionyl-nonanal, 3-glutathionyl-hexanal and 3-glutathionyl-propanal. The presence of the glutathionyl moiety appears as a necessary requirement for the susceptibility of these compounds to the NADPH-dependent reduction by hCBR1. In fact the corresponding alkanals and alkenals, and the cysteinyl and γ-glutamyl-cysteinyl alkanals adducts were either ineffective or very poorly active as CBR1 substrates. Mass spectrometry analysis reveals the ability of hCBR1 to reduce GSHNE to the corresponding GS-dihydroxynonane (GSDHN) and at the same time to catalyze the oxidation of the hemiacetal form of GSHNE, generating the 3-glutathionylnonanoic–δ-lactone. These data are indicative of the ability of the enzyme to catalyze a disproportion reaction of the substrate through the redox recycle of the pyridine cofactor. A rationale for the observed preferential activity of hCBR1 on different GSHNE diastereoisomers is given by molecular modelling. These results evidence the potential of hCBR1 acting on GSHNE to accomplish a dual role, both in terms of HNE detoxification and, through the production of GSDHN, in terms of involvement into the signalling cascade of the cellular inflammatory response.

Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation

MOSCHINI, ROBERTA
Co-primo
;
TUCCINARDI, TIZIANO;BALESTRI, FRANCESCO;CAPPIELLO, MARIO;MURA, UMBERTO;DEL CORSO, ANTONELLA
2016-01-01

Abstract

Human recombinant carbonyl reductase 1 (E.C. 1.1.1.184, hCBR1) is shown to efficiently act as aldehyde reductase on glutathionylated alkanals, namely 3-glutathionyl-4-hydroxynonanal (GSHNE), 3-glutathionyl-nonanal, 3-glutathionyl-hexanal and 3-glutathionyl-propanal. The presence of the glutathionyl moiety appears as a necessary requirement for the susceptibility of these compounds to the NADPH-dependent reduction by hCBR1. In fact the corresponding alkanals and alkenals, and the cysteinyl and γ-glutamyl-cysteinyl alkanals adducts were either ineffective or very poorly active as CBR1 substrates. Mass spectrometry analysis reveals the ability of hCBR1 to reduce GSHNE to the corresponding GS-dihydroxynonane (GSDHN) and at the same time to catalyze the oxidation of the hemiacetal form of GSHNE, generating the 3-glutathionylnonanoic–δ-lactone. These data are indicative of the ability of the enzyme to catalyze a disproportion reaction of the substrate through the redox recycle of the pyridine cofactor. A rationale for the observed preferential activity of hCBR1 on different GSHNE diastereoisomers is given by molecular modelling. These results evidence the potential of hCBR1 acting on GSHNE to accomplish a dual role, both in terms of HNE detoxification and, through the production of GSDHN, in terms of involvement into the signalling cascade of the cellular inflammatory response.
2016
Rotondo, Rossella; Moschini, Roberta; Renzone, Giovanni; Tuccinardi, Tiziano; Balestri, Francesco; Cappiello, Mario; Scaloni, Andrea; Mura, Umberto; DEL CORSO, Antonella
File in questo prodotto:
File Dimensione Formato  
post_printFRBM16.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 788.71 kB
Formato Adobe PDF
788.71 kB Adobe PDF Visualizza/Apri
FRBM16.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/810564
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 23
social impact