Convexity properties of a generalized system with infinite-dimensional image are investigated by means of the notions of image and its extensions associated with the system. Complete characterizations of (proper) linear separation in the image space are given by using the quasi-relative interior, which allow one to obtain necessary and/or sufficient conditions for the impossibility of an image convex generalized system with infinite- dimensional image. These new results are applied to investigate vector quasi-optimization problems and vector dynamic variational inequalities.

Image Convexity of Generalized Systems with Infinite-Dimensional Image and Applications

MASTROENI, GIANDOMENICO
2016-01-01

Abstract

Convexity properties of a generalized system with infinite-dimensional image are investigated by means of the notions of image and its extensions associated with the system. Complete characterizations of (proper) linear separation in the image space are given by using the quasi-relative interior, which allow one to obtain necessary and/or sufficient conditions for the impossibility of an image convex generalized system with infinite- dimensional image. These new results are applied to investigate vector quasi-optimization problems and vector dynamic variational inequalities.
2016
Li, J; Mastroeni, Giandomenico
File in questo prodotto:
File Dimensione Formato  
Li-Mastroeni-JOTA-2016.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 746.67 kB
Formato Adobe PDF
746.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
LiMas-JOTA2016arpi.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 334.96 kB
Formato Adobe PDF
334.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/820318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact