To understand the solidification processes of natural magma and the texture evolution of igneous rocks, we have carried out in situ observation of the crystallization of a high-K basaltic melt cooling from ~1,240 °C in a moissanite cell. In a series of experiments with different thermal history, olivine or clinopyroxene (cpx) appeared as the liquidus phase before the formation of plagioclase. During cooling at 100 °C/h, the morphology of olivine and cpx transited from tabular to hopper habit. To first order approximation, crystal grow rate (2 × 10-9 to 7 × 10-9 m/s for olivine and 6 × 10-9 to 17 × 10-9 m/s for cpx), probably limited by chemical diffusion, is proportional to crystal size. In one experiment dominated by olivine crystallization, the good image quality allows the analysis of texture evolution over an extended period. Nucleation of olivine occurred only in a narrow temperature and time interval below the liquidus. Two-dimensional length- and area-based crystal size distributions (CSDs) show counterclockwise rotation around axes of 8 μm and 100 μm2, which is consistent with the proportionate crystal growth. Both CSDs and direct observation show the dissolution of small crystals and Ostwald ripening. These data suggest that conventional analyses of crystal size distributions of igneous rocks may be in error-the slope of the CSD cannot be interpreted in terms of a uniform growth rate, and the intercept with the vertical axis does not correspond to a nucleation density. © 2014 Springer-Verlag Berlin Heidelberg.

In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks

MASOTTA, MATTEO;
2014-01-01

Abstract

To understand the solidification processes of natural magma and the texture evolution of igneous rocks, we have carried out in situ observation of the crystallization of a high-K basaltic melt cooling from ~1,240 °C in a moissanite cell. In a series of experiments with different thermal history, olivine or clinopyroxene (cpx) appeared as the liquidus phase before the formation of plagioclase. During cooling at 100 °C/h, the morphology of olivine and cpx transited from tabular to hopper habit. To first order approximation, crystal grow rate (2 × 10-9 to 7 × 10-9 m/s for olivine and 6 × 10-9 to 17 × 10-9 m/s for cpx), probably limited by chemical diffusion, is proportional to crystal size. In one experiment dominated by olivine crystallization, the good image quality allows the analysis of texture evolution over an extended period. Nucleation of olivine occurred only in a narrow temperature and time interval below the liquidus. Two-dimensional length- and area-based crystal size distributions (CSDs) show counterclockwise rotation around axes of 8 μm and 100 μm2, which is consistent with the proportionate crystal growth. Both CSDs and direct observation show the dissolution of small crystals and Ostwald ripening. These data suggest that conventional analyses of crystal size distributions of igneous rocks may be in error-the slope of the CSD cannot be interpreted in terms of a uniform growth rate, and the intercept with the vertical axis does not correspond to a nucleation density. © 2014 Springer-Verlag Berlin Heidelberg.
2014
Ni, Huaiwei; Keppler, Hans; Walte, Nicolas; Schiavi, Federica; Chen, Yang; Masotta, Matteo; Li, Zhenjiang
File in questo prodotto:
File Dimensione Formato  
Ni et al. (CMP 2014).pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.66 MB
Formato Adobe PDF
3.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ni et al. (CMP2014)_revised.pdf

Open Access dal 02/05/2015

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/828138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact