This paper considers parameter estimation of a hybrid sinusoidal frequency modulated (FM) and polynomial phase signal (PPS) from a finite number of samples. We first show limitations of an existing method, the high-order ambiguity function (HAF), and then propose a new method by adopting the high-order phase function which was originally designed for the pure PPS. The proposed method estimates parameters of interest from peak locations in the time-frequency rate domain, which are less perturbed by the noise than peak values used by the HAF-based method. Numerical evaluation shows the proposed method can handle the hybrid FM-PPS signal with low sinusoidal frequency and improve estimation accuracy in terms of mean squared error for several orders of magnitude.
Parameter Estimation of Hybrid Sinusoidal FM-Polynomial Phase Signal
GINI, FULVIO
2017-01-01
Abstract
This paper considers parameter estimation of a hybrid sinusoidal frequency modulated (FM) and polynomial phase signal (PPS) from a finite number of samples. We first show limitations of an existing method, the high-order ambiguity function (HAF), and then propose a new method by adopting the high-order phase function which was originally designed for the pure PPS. The proposed method estimates parameters of interest from peak locations in the time-frequency rate domain, which are less perturbed by the noise than peak values used by the HAF-based method. Numerical evaluation shows the proposed method can handle the hybrid FM-PPS signal with low sinusoidal frequency and improve estimation accuracy in terms of mean squared error for several orders of magnitude.File | Dimensione | Formato | |
---|---|---|---|
07790846.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
6-postprint.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
932.05 kB
Formato
Adobe PDF
|
932.05 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.