Since there is a growing interest worldwide in reducing pollution from sea transport and sea ports activities, one of the biggest issues is to reduce energy consumption and emissions from ground transportation within ports to cranes and other logistic activities. In particular, Rubber Tired Gantry cranes with Diesel engine coupled with electric drive normally brakes the lowering of the container electrically, by dissipating the electric power in resistive loads. This means that energy is consumed to lift the containers and dissipated when it could be recovered, when lowering the load. Thus, one possibility is to recover that energy in a storage system, based on supercapacitors or lithium batteries. This paper starts from experimental measurements conduced on a RTG crane operating in an Italian port. After evaluating real power and energy flows, an appropriate powertrain architecture based on the utilisation of such storage systems was selected, and components properly sized to increase the overall system efficiency. To analyse the different variants and optimize the energy management strategy, a simulation model realised in Modelica language has been used, in order to investigate the cost-effectiveness of the different proposed solutions.

Hybridization of rubber tired gantry (RTG) cranes

ANTONELLI, MARCO;CERAOLO, MASSIMO;DESIDERI, UMBERTO;LUTZEMBERGER, GIOVANNI
;
SANI, LUCA
2017-01-01

Abstract

Since there is a growing interest worldwide in reducing pollution from sea transport and sea ports activities, one of the biggest issues is to reduce energy consumption and emissions from ground transportation within ports to cranes and other logistic activities. In particular, Rubber Tired Gantry cranes with Diesel engine coupled with electric drive normally brakes the lowering of the container electrically, by dissipating the electric power in resistive loads. This means that energy is consumed to lift the containers and dissipated when it could be recovered, when lowering the load. Thus, one possibility is to recover that energy in a storage system, based on supercapacitors or lithium batteries. This paper starts from experimental measurements conduced on a RTG crane operating in an Italian port. After evaluating real power and energy flows, an appropriate powertrain architecture based on the utilisation of such storage systems was selected, and components properly sized to increase the overall system efficiency. To analyse the different variants and optimize the energy management strategy, a simulation model realised in Modelica language has been used, in order to investigate the cost-effectiveness of the different proposed solutions.
2017
Antonelli, Marco; Ceraolo, Massimo; Desideri, Umberto; Lutzemberger, Giovanni; Sani, Luca
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352152X17300816-main.pdf

solo utenti autorizzati

Descrizione: Articolo finale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Lutzemberger.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/861959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact