We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an N×N structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.
A real QZ algorithm for structured companion pencils
Boito, P.;GEMIGNANI, LUCA
2017-01-01
Abstract
We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an N×N structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RealQZ_revised2.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
561.58 kB
Formato
Adobe PDF
|
561.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.