We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an N×N structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.
Autori interni: | |
Autori: | Boito, P.; Eidelman, Y.; Gemignani, Luca |
Titolo: | A real QZ algorithm for structured companion pencils |
Anno del prodotto: | 2017 |
Abstract: | We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an N×N structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method. |
Digital Object Identifier (DOI): | 10.1007/s10092-017-0231-6 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
RealQZ_revised2.pdf | Documento in Post-print | Tutti i diritti riservati (All rights reserved) | Open AccessVisualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.