We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an N×N structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.

A real QZ algorithm for structured companion pencils

Boito, P.;GEMIGNANI, LUCA
2017

Abstract

We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an N×N structured matrix pencil using O(N) flops per iteration and O(N) memory storage. Numerical experiments and comparisons confirm the effectiveness and the stability of the proposed method.
Boito, P.; Eidelman, Y.; Gemignani, Luca
File in questo prodotto:
File Dimensione Formato  
RealQZ_revised2.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 561.58 kB
Formato Adobe PDF
561.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/868487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact