We introduce a class of “Lipschitz horizontal” vector fields in homogeneous groups, for which we show equivalent descriptions, e.g., in terms of suitable derivations. We then investigate the associated Cauchy problem, providing a uniqueness result both at equilibrium points and for vector fields of an involutive submodule of Lipschitz horizontal vector fields. We finally exhibit a counterexample to the general well-posedness theory for Lipschitz horizontal vector fields, in contrast with the Euclidean theory.
On Lipschitz vector fields and the Cauchy problem in homogeneous groups
MAGNANI, VALENTINO
;TREVISAN, DARIO
2018-01-01
Abstract
We introduce a class of “Lipschitz horizontal” vector fields in homogeneous groups, for which we show equivalent descriptions, e.g., in terms of suitable derivations. We then investigate the associated Cauchy problem, providing a uniqueness result both at equilibrium points and for vector fields of an involutive submodule of Lipschitz horizontal vector fields. We finally exhibit a counterexample to the general well-posedness theory for Lipschitz horizontal vector fields, in contrast with the Euclidean theory.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.