We consider a formulation of a network equilibrium problem given by a suitable quasi-variational inequality where the feasible flows are supposed to be dependent on the equilibrium solution of the model. The KarushâKuhnâTucker optimality conditions for this quasi-variational inequality allow us to consider dual variables, associated with the constraints of the feasible set, which may receive interesting interpretations in terms of the network, extending the classic ones existing in the literature.
Quasi-variational equilibrium models for network flow problems
MASTROENI, GIANDOMENICO
;PAPPALARDO, MASSIMO
2018-01-01
Abstract
We consider a formulation of a network equilibrium problem given by a suitable quasi-variational inequality where the feasible flows are supposed to be dependent on the equilibrium solution of the model. The KarushâKuhnâTucker optimality conditions for this quasi-variational inequality allow us to consider dual variables, associated with the constraints of the feasible set, which may receive interesting interpretations in terms of the network, extending the classic ones existing in the literature.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1007-s11590-017-1202-1.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
463.39 kB
Formato
Adobe PDF
|
463.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Mastroeni_PappalardoR2_arpi.pdf
Open Access dal 01/01/2020
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
248.86 kB
Formato
Adobe PDF
|
248.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.