In this paper, a particular class of bicriteria maximization problems over a compact polyhedron is considered. The first component of the objective function is the ratio of powers of affine functions and the second one is linear. Several theoretical properties are provided, such as the pseudoconcavity of the first criterium of the objective function, the connectedness and compactness of both the efficient frontier and the set of efficient points. The obtained results allow us to propose a new simplex-like solution method for generating the whole efficient frontier; to better clarify the use of the suggested algorithm, several examples are described and the results of a computational test are presented.

Generating the efficient frontier of a class of bicriteria generalized fractional programming

Cambini, Riccardo;Carosi, Laura
;
Martein, Laura
2017-01-01

Abstract

In this paper, a particular class of bicriteria maximization problems over a compact polyhedron is considered. The first component of the objective function is the ratio of powers of affine functions and the second one is linear. Several theoretical properties are provided, such as the pseudoconcavity of the first criterium of the objective function, the connectedness and compactness of both the efficient frontier and the set of efficient points. The obtained results allow us to propose a new simplex-like solution method for generating the whole efficient frontier; to better clarify the use of the suggested algorithm, several examples are described and the results of a computational test are presented.
2017
Cambini, Riccardo; Carosi, Laura; Martein, Laura
File in questo prodotto:
File Dimensione Formato  
DEF-2017-Caro-et-al-caricato-arpi.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 576.71 kB
Formato Adobe PDF
576.71 kB Adobe PDF Visualizza/Apri
Cambini2017_version of record.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 840 kB
Formato Adobe PDF
840 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/880674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact