This paper presents experimental rigs of the Research Centre for the Mechanics of Turbomachinery of the Department of Civil and Industrial Engineering of the University of Pisa. Most of them were designed and constructed to allow investigations of real machine components and to furnish more realistic results than basic tribological test rigs. Tilting pad journal bearings, as well as gears and complete gearboxes for advanced industrial applications, can be tested using the rigs described in the paper. A novel test rig with a power rating of approximately 1 MW allows investigations of the static and dynamic characteristics of high-performance tilting pad journal bearings for turbomachinery. A twin disc machine and closed loop gear test rig are used to investigate the different kinds of wear mechanisms occurring in gears. Functional and durability tests on planetary gearboxes for new turbo-fan engines could be performed using another novel large test rig. A circulating power configuration was adopted for most of the rigs so that only the power needed to cover the friction losses has to be supplied, while the circulating power can be more than 20 times higher. All the test rigs include very complex load applications and lubrication plants, as well as dedicated control and data acquisition systems. The rigs and related plants were designed and constructed through strong and fruitful collaborations between the university and some large and small–medium companies. Despite some limitations in the publication of the results as a result of the industrial sensitivity of the data, the synergy among these different actors was stimulating and fundamental for the realization of new advanced industrial applications.

Experimental rigs for testing components of advanced industrial applications

Ciulli, Enrico
2018-01-01

Abstract

This paper presents experimental rigs of the Research Centre for the Mechanics of Turbomachinery of the Department of Civil and Industrial Engineering of the University of Pisa. Most of them were designed and constructed to allow investigations of real machine components and to furnish more realistic results than basic tribological test rigs. Tilting pad journal bearings, as well as gears and complete gearboxes for advanced industrial applications, can be tested using the rigs described in the paper. A novel test rig with a power rating of approximately 1 MW allows investigations of the static and dynamic characteristics of high-performance tilting pad journal bearings for turbomachinery. A twin disc machine and closed loop gear test rig are used to investigate the different kinds of wear mechanisms occurring in gears. Functional and durability tests on planetary gearboxes for new turbo-fan engines could be performed using another novel large test rig. A circulating power configuration was adopted for most of the rigs so that only the power needed to cover the friction losses has to be supplied, while the circulating power can be more than 20 times higher. All the test rigs include very complex load applications and lubrication plants, as well as dedicated control and data acquisition systems. The rigs and related plants were designed and constructed through strong and fruitful collaborations between the university and some large and small–medium companies. Despite some limitations in the publication of the results as a result of the industrial sensitivity of the data, the synergy among these different actors was stimulating and fundamental for the realization of new advanced industrial applications.
2018
Ciulli, Enrico
File in questo prodotto:
File Dimensione Formato  
10.1007_s40544-017-0197-z.pdf

accesso aperto

Descrizione: Aricolo principale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/926340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact