Chiroptical broad-range spectral analysis extending from UV to mid-IR was employed to study a family of Co(II) N-(1-(aryl)ethyl)salicylaldiminato Schiff base complexes with pseudotetrahedral geometry associated with chirality-at-metal of the Δ/∇ type. While common chiral organic compounds have well-separated absorption and circular dichroism spectra (CD) in the UV/vis and IR regions, chiral Co(II) complexes feature an almost unique continuum of absorption and CD bands, which cover in sequence the UV, visible, near-IR (NIR), and IR regions of the electromagnetic spectrum. They can be collected in a single (chiro)optical superspectrum ranging from the UV (230 nm, 5.4 eV) to the mid-IR (1000 cm-1, 0.12 eV), which offers a fingerprint of the structure and stereochemistry of the metal complexes. Each region of the superspectrum contributes to one piece of information: the NIR-CD region, in combination with TDDFT calculations, allows a reliable assignment of the metal-centered chirality; the UV-CD region facilitates the analysis of the Δ/∇ diastereomeric equilibrium in solution; and the IR-VCD region contains a combination of low-lying metal-centered electronic states (LLES) and ligand-centered vibrations and displays characteristically enhanced and monosignate VCD bands. Circular dichroism in the NIR and IR regions is crucial to reveal the presence of d-d transitions of the Co(II) core which, due to the electric-dipole forbidden character, would be otherwise overlooked in the corresponding absorption spectra.

Broad-Range Spectral Analysis for Chiral Metal Coordination Compounds: (Chiro)optical Superspectrum of Cobalt(II) Complexes

Pescitelli, Gennaro
Primo
;
Arrico, Lorenzo;Di Bari, Lorenzo;
2018

Abstract

Chiroptical broad-range spectral analysis extending from UV to mid-IR was employed to study a family of Co(II) N-(1-(aryl)ethyl)salicylaldiminato Schiff base complexes with pseudotetrahedral geometry associated with chirality-at-metal of the Δ/∇ type. While common chiral organic compounds have well-separated absorption and circular dichroism spectra (CD) in the UV/vis and IR regions, chiral Co(II) complexes feature an almost unique continuum of absorption and CD bands, which cover in sequence the UV, visible, near-IR (NIR), and IR regions of the electromagnetic spectrum. They can be collected in a single (chiro)optical superspectrum ranging from the UV (230 nm, 5.4 eV) to the mid-IR (1000 cm-1, 0.12 eV), which offers a fingerprint of the structure and stereochemistry of the metal complexes. Each region of the superspectrum contributes to one piece of information: the NIR-CD region, in combination with TDDFT calculations, allows a reliable assignment of the metal-centered chirality; the UV-CD region facilitates the analysis of the Δ/∇ diastereomeric equilibrium in solution; and the IR-VCD region contains a combination of low-lying metal-centered electronic states (LLES) and ligand-centered vibrations and displays characteristically enhanced and monosignate VCD bands. Circular dichroism in the NIR and IR regions is crucial to reveal the presence of d-d transitions of the Co(II) core which, due to the electric-dipole forbidden character, would be otherwise overlooked in the corresponding absorption spectra.
Pescitelli, Gennaro; Lüdeke, Steffen; Chamayou, Anne-Christine; Marolt, Marija; Justus, Viktor; Górecki, Marcin; Arrico, Lorenzo; Di Bari, Lorenzo; Islam, Mohammad Ariful; Gruber, Irina; Enamullah, Mohammed; Janiak, Christoph
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/934739
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact