In this paper, we study the topological susceptibility of two-dimensional UðNÞ gauge theories. We provide explicit expressions for the partition function and the topological susceptibility at finite lattice spacing and finite volume. We then examine the particularly simple case of the Abelian Uð1Þ theory, the continuum limit, and the infinite volume limit, and we finally discuss the large N limit of our results.
Topological susceptibility of two-dimensional U(N) gauge theories
Claudio Bonati;Paolo Rossi
2019-01-01
Abstract
In this paper, we study the topological susceptibility of two-dimensional UðNÞ gauge theories. We provide explicit expressions for the partition function and the topological susceptibility at finite lattice spacing and finite volume. We then examine the particularly simple case of the Abelian Uð1Þ theory, the continuum limit, and the infinite volume limit, and we finally discuss the large N limit of our results.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1901.09830.pdf
accesso aperto
Descrizione: preprint axiv
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
340.14 kB
Formato
Adobe PDF
|
340.14 kB | Adobe PDF | Visualizza/Apri |
PhysRevD.99.054503.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
432.5 kB
Formato
Adobe PDF
|
432.5 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.