In this paper, we study the topological susceptibility of two-dimensional UðNÞ gauge theories. We provide explicit expressions for the partition function and the topological susceptibility at finite lattice spacing and finite volume. We then examine the particularly simple case of the Abelian Uð1Þ theory, the continuum limit, and the infinite volume limit, and we finally discuss the large N limit of our results.

Topological susceptibility of two-dimensional U(N) gauge theories

Claudio Bonati;Paolo Rossi
2019-01-01

Abstract

In this paper, we study the topological susceptibility of two-dimensional UðNÞ gauge theories. We provide explicit expressions for the partition function and the topological susceptibility at finite lattice spacing and finite volume. We then examine the particularly simple case of the Abelian Uð1Þ theory, the continuum limit, and the infinite volume limit, and we finally discuss the large N limit of our results.
2019
Bonati, Claudio; Rossi, Paolo
File in questo prodotto:
File Dimensione Formato  
1901.09830.pdf

accesso aperto

Descrizione: preprint axiv
Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 340.14 kB
Formato Adobe PDF
340.14 kB Adobe PDF Visualizza/Apri
PhysRevD.99.054503.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 432.5 kB
Formato Adobe PDF
432.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/971359
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 11
social impact