We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space X isometrically embeds into some finite-dimensional normed space if and only if X is finite. In the case of power functions we give a uniform bound on the cardinality of X depending only on the power exponent and the dimension of the vector space.
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
Le Donne, Enrico;
2017-01-01
Abstract
We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space X isometrically embeds into some finite-dimensional normed space if and only if X is finite. In the case of power functions we give a uniform bound on the cardinality of X depending only on the power exponent and the dimension of the vector space.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LRW-isometric-snowflake-2017-03-06.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
298.34 kB
Formato
Adobe PDF
|
298.34 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.