Modern networks have critical security needs and a suitable level of protection and performance is usually achieved with the use of dedicated hardware cryptographic cores. Although the Advanced Encryption Standard (AES) is considered the best approach when symmetric cryptography is required, one of its main weaknesses lies in its measurable power consumption. Side-Channel Attacks (SCAs) use this emitted power to analyse and revert the mathematical steps and extract the encryption key. Nowadays they exist several dedicated equipment and workstations for SCA weaknesses analysis and the evaluation of the related countermeasures, but they can present significant drawbacks as a high cost for the instrumentation or, in case of cheaper instrumentation, the need to underclock the physical circuit implementing the AES cipher, in order to adapt the circuit clock frequency accordingly to the power sampling rate of ADCs or oscilloscopes bandwidth. In this work, we proposed a methodology for Correlation and Differential Power Analysis against hardware implementations of an AES core, relying only on a simulative approach. Our solution extracts simulated power traces from a gate-level netlist and then elaborates them using mathematical-statistical procedures. The main advantage of our solution is that it allows to emulate a real attack scenario based on emitted power analysis, without requiring any additional physical circuit or dedicated equipment for power samples acquisition, neither modifying the working conditions of the target application context (such as the circuit clock frequency). Thus, our approach can be used to validate and benchmark any SCA countermeasure during an early step of the design, thereby shortening and helping the designers to find the best solution during a preliminary phase and potentially without additional costs.

A simulated approach to evaluate side-channel attack countermeasures for the Advanced Encryption Standard

Crocetti L.;Baldanzi L.;Bertolucci M.;Fanucci L.
2019-01-01

Abstract

Modern networks have critical security needs and a suitable level of protection and performance is usually achieved with the use of dedicated hardware cryptographic cores. Although the Advanced Encryption Standard (AES) is considered the best approach when symmetric cryptography is required, one of its main weaknesses lies in its measurable power consumption. Side-Channel Attacks (SCAs) use this emitted power to analyse and revert the mathematical steps and extract the encryption key. Nowadays they exist several dedicated equipment and workstations for SCA weaknesses analysis and the evaluation of the related countermeasures, but they can present significant drawbacks as a high cost for the instrumentation or, in case of cheaper instrumentation, the need to underclock the physical circuit implementing the AES cipher, in order to adapt the circuit clock frequency accordingly to the power sampling rate of ADCs or oscilloscopes bandwidth. In this work, we proposed a methodology for Correlation and Differential Power Analysis against hardware implementations of an AES core, relying only on a simulative approach. Our solution extracts simulated power traces from a gate-level netlist and then elaborates them using mathematical-statistical procedures. The main advantage of our solution is that it allows to emulate a real attack scenario based on emitted power analysis, without requiring any additional physical circuit or dedicated equipment for power samples acquisition, neither modifying the working conditions of the target application context (such as the circuit clock frequency). Thus, our approach can be used to validate and benchmark any SCA countermeasure during an early step of the design, thereby shortening and helping the designers to find the best solution during a preliminary phase and potentially without additional costs.
2019
Crocetti, L.; Baldanzi, L.; Bertolucci, M.; Sarti, L.; Carnevale, B.; Fanucci, L.
File in questo prodotto:
File Dimensione Formato  
A Simulated Approach to Evaluate SCA Countermeasures for the AES.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri
1-s2.0-S0167926018305170-main.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1019431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact