We report room temperature Hall mobility measurements, low temperature magnetoresistance analysis and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO2/Si substrates. We found that thermal annealing in vacuum at 450 °C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.3 Ω sq-1 after annealing, and are n-type doped, with carrier concentrations in the low 1020 cm-3 range. The charge carrier mobility is found to increase with increasing film thickness, reaching a maximum value of 33 cm2 V-1 s-1 for a 480 nm-thick film printed on SiO2/Si. Low-frequency noise characterization shows a 1/f noise behavior and a Hooge parameter in the range of 0.1-1. These results represent the first in-depth electrical and noise characterization of transport in inkjet-printed graphene films, able to provide physical insights on the mechanisms at play.

Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization

Calabrese G.;Pimpolari L.;Conti S.;Mavier F.;Pieri F.;Basso G.;Pennelli G.;MacUcci M.;Iannaccone G.;Casiraghi C.;Fiori G.
2020-01-01

Abstract

We report room temperature Hall mobility measurements, low temperature magnetoresistance analysis and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO2/Si substrates. We found that thermal annealing in vacuum at 450 °C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.3 Ω sq-1 after annealing, and are n-type doped, with carrier concentrations in the low 1020 cm-3 range. The charge carrier mobility is found to increase with increasing film thickness, reaching a maximum value of 33 cm2 V-1 s-1 for a 480 nm-thick film printed on SiO2/Si. Low-frequency noise characterization shows a 1/f noise behavior and a Hooge parameter in the range of 0.1-1. These results represent the first in-depth electrical and noise characterization of transport in inkjet-printed graphene films, able to provide physical insights on the mechanisms at play.
2020
Calabrese, G.; Pimpolari, L.; Conti, S.; Mavier, F.; Majee, S.; Worsley, R.; Wang, Z.; Pieri, F.; Basso, G.; Pennelli, G.; Parvez, K.; Brooks, D.; Macucci, M.; Iannaccone, G.; Novoselov, K. S.; Casiraghi, C.; Fiori, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1069867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact