Several dietary strategies were adopted to reduce saturated fatty acids and increase beneficial fatty acids (FA) for human health. Few studies are available about the pathways/genes involved in these processes. Illumina RNA-sequencing was used to investigate changes in the ovine mammary gland transcriptome following supplemental feeding with 20% extruded linseed. Comisana ewes in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 20% DM of linseed panel for 28 days (treatment period). Milk production was decreased by 30.46% with linseed supplementation. Moreover, a significant reduction in fat, protein and lactose secretion was also observed. Several unsaturated FAs were increased while short and medium chain saturated FAs were decreased by linseed treatment. Around four thousand (1795 up- and 2133 down-regulated) genes were significantly differentially regulated by linseed supplementation. The main pathways affected by linseed supplementation were those involved in the energy balance of the mammary gland. Principally, the mammary gland of fed linseed sheep showed a reduced abundance of transcripts related to the synthesis of lipids and carbohydrates and oxidative phosphorylation. Our study suggests that the observed decrease in milk saturated FA was correlated to down-regulation of genes in the lipid synthesis and lipid metabolism pathways.

Transcriptome Adaptation of the Ovine Mammary Gland to Dietary Supplementation of Extruded Linseed

Conte, Giuseppe
Primo
;
Giordani, Tommaso;Vangelisti, Alberto;Serra, Andrea;Cavallini, Andrea;Mele, Marcello
2021-01-01

Abstract

Several dietary strategies were adopted to reduce saturated fatty acids and increase beneficial fatty acids (FA) for human health. Few studies are available about the pathways/genes involved in these processes. Illumina RNA-sequencing was used to investigate changes in the ovine mammary gland transcriptome following supplemental feeding with 20% extruded linseed. Comisana ewes in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 20% DM of linseed panel for 28 days (treatment period). Milk production was decreased by 30.46% with linseed supplementation. Moreover, a significant reduction in fat, protein and lactose secretion was also observed. Several unsaturated FAs were increased while short and medium chain saturated FAs were decreased by linseed treatment. Around four thousand (1795 up- and 2133 down-regulated) genes were significantly differentially regulated by linseed supplementation. The main pathways affected by linseed supplementation were those involved in the energy balance of the mammary gland. Principally, the mammary gland of fed linseed sheep showed a reduced abundance of transcripts related to the synthesis of lipids and carbohydrates and oxidative phosphorylation. Our study suggests that the observed decrease in milk saturated FA was correlated to down-regulation of genes in the lipid synthesis and lipid metabolism pathways.
2021
Conte, Giuseppe; Giordani, Tommaso; Vangelisti, Alberto; Serra, Andrea; Pauselli, Mariano; Cavallini, Andrea; Mele, Marcello
File in questo prodotto:
File Dimensione Formato  
Conte et al., 2021b.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1107102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact