The Nemo's Garden® project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics of Stevia rebaudiana (Bertoni) Bertoni grown underwater compared to the terrestrial specimens. The micromorphological analyses, performed on the leaves using light microscopy, fluorescence microscopy, and scanning electron microscopy, evidenced a general uniformity of the trichome morphotype and distribution pattern. The histochemical investigation indicated the simultaneous presence of terpenes and polyphenols in the trichome secreted material from the underwater samples and a prevailing polyphenolic content in the terrestrial specimens; this was also confirmed by biochemical analyses (26.6 mg GAE/g DW). The characterization of non-volatile components, performed using HPLC-MS, showed similar chemical profiles in all the samples, which were characterized by phenolic compounds and steviol glycosides. The volatile compounds, evaluated using HS-SPME coupled with GC-MS, showed sesquiterpene hydrocarbons as the main class in all the analyzed samples (80.1-93.9%). However, the control plants were characterized by a higher content of monoterpene hydrocarbons (12.1%). The underwater biosphere environment did not alter S. rebaudiana micro-morphological characters, although slight qualitative changes were evidenced for the compounds produced as a response to the growth conditions.

Resilience of Stevia rebaudiana (Bertoni) Bertoni in the Underwater Biospheres of Nemo's Garden®: Adaptation to New Cultivation Systems

Ascrizzi, Roberta
Primo
Investigation
;
De Leo, Marinella
Secondo
Investigation
;
Pistelli, Laura
Investigation
;
Pieracci, Ylenia
Investigation
;
Flamini, Guido
Penultimo
Investigation
;
2022-01-01

Abstract

The Nemo's Garden® project is an alternative production system for areas with scarce cultivable land but significant presence of water; thus, it is an interesting intervention to address the climate crisis. This work aimed to evaluate the micromorphological, biochemical, and phytochemical characteristics of Stevia rebaudiana (Bertoni) Bertoni grown underwater compared to the terrestrial specimens. The micromorphological analyses, performed on the leaves using light microscopy, fluorescence microscopy, and scanning electron microscopy, evidenced a general uniformity of the trichome morphotype and distribution pattern. The histochemical investigation indicated the simultaneous presence of terpenes and polyphenols in the trichome secreted material from the underwater samples and a prevailing polyphenolic content in the terrestrial specimens; this was also confirmed by biochemical analyses (26.6 mg GAE/g DW). The characterization of non-volatile components, performed using HPLC-MS, showed similar chemical profiles in all the samples, which were characterized by phenolic compounds and steviol glycosides. The volatile compounds, evaluated using HS-SPME coupled with GC-MS, showed sesquiterpene hydrocarbons as the main class in all the analyzed samples (80.1-93.9%). However, the control plants were characterized by a higher content of monoterpene hydrocarbons (12.1%). The underwater biosphere environment did not alter S. rebaudiana micro-morphological characters, although slight qualitative changes were evidenced for the compounds produced as a response to the growth conditions.
2022
Ascrizzi, Roberta; De Leo, Marinella; Pistelli, Laura; Giuliani, Claudia; Pieracci, Ylenia; Ruffoni, Barbara; Mascarello, Carlo; Fico, Gelsomina; Flam...espandi
File in questo prodotto:
File Dimensione Formato  
Stevia Nemo-Molecules 2022.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1160100
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact