There is an increasing interest in the cultivation of wild edible plants (WEP) in consideration of their quality attributes and salt tolerance, which makes these species good candidates for cascade cropping systems (CCS). In these systems, saline effluents from a salt-sensitive donor crop are used to irrigate a receiving crop with greater salt tolerance. The objective of this study was to evaluate two WEP species, Picris hieracioides (PH) and Plantago coronopus (PC) as candidate crops for CCS. Both species were grown hydroponically with saline effluent from a semi-closed substrate culture of tomato (the donor crop). Both PH and PC were grown in floating system for 36 days during spring using one of the following nutrient solutions: i) standard nutrient solution (CNS, control); ii) NaCl-enriched (50 mmol L-1) standard nutrient solution (SNS); iii) effluent from tomato substrate culture (TE); iv) artificial effluent (ATE), i.e. a nutrient with ion concentrations and salinity level (approximately 50 mmol L-1 NaCl) very close to those of TE. Compared with CNS, leaf production was significantly reduced in both TE (-33.6%) and ATE (-33.6%) plants of PH, and only in TE (-23.3%) plants of PC. In both species, leaf Na content increased in SNS (+858.1% in PH; +279.4% in PC), TE (+704.7% in PH; +226.3 in PC) and ATE (+697.7% in PH; +229.4% in PC) plants compared with the controls. Leaf antioxidant capacity was positively correlated with total phenol content and, in PC, increased in SNS (+74.3%), TE (+53.9%) and ATE plants (+37.7%) compared with the controls. In conclusion, both PH and PC could be grown in CCS with saline greenhouse hydroponic effluents since the moderate reduction of leaf production could be partially compensated by reduced production costs because of zero costs for fertilisers. The growth inhibition observed in both WEPs species cultivated with the hydroponic effluent was primarily due to its high salinity with minor or no effects due to the suboptimal nutrient levels and/or the presence of phytotoxic root exudates or microbial metabolites.

Wild edible plant species grown hydroponically with crop drainage water in a Mediterranean climate: Crop yield, leaf quality, and use of water and nutrients

Puccinelli, Martina
Primo
;
Carmassi, Giulia;Pardossi, Alberto;Incrocci, Luca
Ultimo
2023-01-01

Abstract

There is an increasing interest in the cultivation of wild edible plants (WEP) in consideration of their quality attributes and salt tolerance, which makes these species good candidates for cascade cropping systems (CCS). In these systems, saline effluents from a salt-sensitive donor crop are used to irrigate a receiving crop with greater salt tolerance. The objective of this study was to evaluate two WEP species, Picris hieracioides (PH) and Plantago coronopus (PC) as candidate crops for CCS. Both species were grown hydroponically with saline effluent from a semi-closed substrate culture of tomato (the donor crop). Both PH and PC were grown in floating system for 36 days during spring using one of the following nutrient solutions: i) standard nutrient solution (CNS, control); ii) NaCl-enriched (50 mmol L-1) standard nutrient solution (SNS); iii) effluent from tomato substrate culture (TE); iv) artificial effluent (ATE), i.e. a nutrient with ion concentrations and salinity level (approximately 50 mmol L-1 NaCl) very close to those of TE. Compared with CNS, leaf production was significantly reduced in both TE (-33.6%) and ATE (-33.6%) plants of PH, and only in TE (-23.3%) plants of PC. In both species, leaf Na content increased in SNS (+858.1% in PH; +279.4% in PC), TE (+704.7% in PH; +226.3 in PC) and ATE (+697.7% in PH; +229.4% in PC) plants compared with the controls. Leaf antioxidant capacity was positively correlated with total phenol content and, in PC, increased in SNS (+74.3%), TE (+53.9%) and ATE plants (+37.7%) compared with the controls. In conclusion, both PH and PC could be grown in CCS with saline greenhouse hydroponic effluents since the moderate reduction of leaf production could be partially compensated by reduced production costs because of zero costs for fertilisers. The growth inhibition observed in both WEPs species cultivated with the hydroponic effluent was primarily due to its high salinity with minor or no effects due to the suboptimal nutrient levels and/or the presence of phytotoxic root exudates or microbial metabolites.
2023
Puccinelli, Martina; Carmassi, Giulia; Pardossi, Alberto; Incrocci, Luca
File in questo prodotto:
File Dimensione Formato  
Puccinelli_et_al_AGWAT_2023_WEP_CSS.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 725.96 kB
Formato Adobe PDF
725.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1170245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact