This work describes the hardware implementation of a cryptographic accelerators suite, named Crypto-Tile, in the framework of the European Processor Initiative (EPI) project. The EPI project traced the roadmap to develop the first family of low-power processors with the design fully made in Europe, for Big Data, supercomputers and automotive. Each of the coprocessors of Crypto-Tile is dedicated to a specific family of cryptographic algorithms, offering functions for symmetric and public-key cryptography, computation of digests, generation of random numbers, and Post-Quantum cryptography. The performances of each coprocessor outperform other available solutions, offering innovative hardware-native services, such as key management, clock randomisation and access privilege mechanisms. The system has been synthesised on a 7 nm standard-cell technology, being the first Cryptoprocessor to be characterised in such an advanced silicon technology. The post-synthesis netlist has been employed to assess the resistance of Crypto-Tile to power analysis side-channel attacks. Finally, a demoboard has been implemented, integrating a RISC-V softcore processor and the Crypto-Tile module, and drivers for hardware abstraction layer, bare-metal applications and drivers for Linux kernel in C language have been developed. Finally, we exploited them to compare in terms of execution speed the hardware-accelerated algorithms against software-only solutions.

Hardware Design of an Advanced-Feature Cryptographic Tile within the European Processor Initiative

Nannipieri, Pietro;Crocetti, Luca;Di Matteo, Stefano;Fanucci, Luca;Saponara, Sergio
2023-01-01

Abstract

This work describes the hardware implementation of a cryptographic accelerators suite, named Crypto-Tile, in the framework of the European Processor Initiative (EPI) project. The EPI project traced the roadmap to develop the first family of low-power processors with the design fully made in Europe, for Big Data, supercomputers and automotive. Each of the coprocessors of Crypto-Tile is dedicated to a specific family of cryptographic algorithms, offering functions for symmetric and public-key cryptography, computation of digests, generation of random numbers, and Post-Quantum cryptography. The performances of each coprocessor outperform other available solutions, offering innovative hardware-native services, such as key management, clock randomisation and access privilege mechanisms. The system has been synthesised on a 7 nm standard-cell technology, being the first Cryptoprocessor to be characterised in such an advanced silicon technology. The post-synthesis netlist has been employed to assess the resistance of Crypto-Tile to power analysis side-channel attacks. Finally, a demoboard has been implemented, integrating a RISC-V softcore processor and the Crypto-Tile module, and drivers for hardware abstraction layer, bare-metal applications and drivers for Linux kernel in C language have been developed. Finally, we exploited them to compare in terms of execution speed the hardware-accelerated algorithms against software-only solutions.
2023
Nannipieri, Pietro; Crocetti, Luca; Di Matteo, Stefano; Fanucci, Luca; Saponara, Sergio
File in questo prodotto:
File Dimensione Formato  
Hardware_Design_of_an_Advanced-Feature_Cryptographic_Tile_within_the_European_Processor_Initiative.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1180007
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact