Effective integration of terrestrial and non-terrestrial segments is one of the key research avenues in the design of current and future wireless communication networks. To this aim, modern communication-satellite constellations intend to attain sufficiently high throughput in terms of bit rate per unit area on the ground by rather aggressive patterns of spatial frequency reuse. This goal calls for on-board narrow-beam antennas, whose size turns out to be in many cases incompatible with the size/mass and accommodation constraints of the hosting satellite. This paper investigates the attainable performance of large distributed arrays of antennas implemented as the ensemble of a few to many simpler sub-antennas of smaller sizes, carried by one (small) satellite each. The sub-antennas can in their turn be implemented like (regular) 2D arrays of simple radiating elements, realizing an overall (distributed) antenna architecture that we call “formation of arrays” (FoA). The satellites that implement this radiating architecture need to be relatively close to each other and constitute a formation of flying objects, to be coordinated and controlled as a whole. In this paper, we develop a theoretical analysis of an FoA antenna, and we show how to take advantage of this new technology to improve network throughput in a multi-beam S-band mobile communication network with low-earth or geostationary orbiting satellites directly providing 5G-like communication services to hand-held user terminals.

Formation-of-Arrays Antenna Technology for High-Throughput Mobile Non-Terrestrial Networks

Bacci G.;Luise M.;Sanguinetti L.;Sebastiani E.
2023-01-01

Abstract

Effective integration of terrestrial and non-terrestrial segments is one of the key research avenues in the design of current and future wireless communication networks. To this aim, modern communication-satellite constellations intend to attain sufficiently high throughput in terms of bit rate per unit area on the ground by rather aggressive patterns of spatial frequency reuse. This goal calls for on-board narrow-beam antennas, whose size turns out to be in many cases incompatible with the size/mass and accommodation constraints of the hosting satellite. This paper investigates the attainable performance of large distributed arrays of antennas implemented as the ensemble of a few to many simpler sub-antennas of smaller sizes, carried by one (small) satellite each. The sub-antennas can in their turn be implemented like (regular) 2D arrays of simple radiating elements, realizing an overall (distributed) antenna architecture that we call “formation of arrays” (FoA). The satellites that implement this radiating architecture need to be relatively close to each other and constitute a formation of flying objects, to be coordinated and controlled as a whole. In this paper, we develop a theoretical analysis of an FoA antenna, and we show how to take advantage of this new technology to improve network throughput in a multi-beam S-band mobile communication network with low-earth or geostationary orbiting satellites directly providing 5G-like communication services to hand-held user terminals.
2023
Bacci, G.; De Gaudenzi, R.; Luise, M.; Sanguinetti, L.; Sebastiani, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1185747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact