Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-19 pneumonia. Here, we present an improved version of the LungQuant automatic segmentation software (LungQuant v(2)), which implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19 pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net(1)) outputs the mask of the lungs, and the final one (U-net(2)) generates the mask of the COVID-19 lesions. With respect to the previous version (LungQuant v1), three main improvements are introduced: the BB-net, a new term in the loss function in the U-net for lesion segmentation and a post-processing procedure to separate the right and left lungs. The three DNNs were optimized, trained and tested on publicly available CT scans. We evaluated the system segmentation capability on an independent test set consisting of ten fully annotated CT scans, the COVID-19-CT-Seg benchmark dataset. The test performances are reported by means of the volumetric dice similarity coefficient (vDSC) and the surface dice similarity coefficient (sDSC) between the reference and the segmented objects. LungQuant v2 achieves a vDSC (sDSC) equal to 0.96 +/- 0.01 (0.97 +/- 0.01) and 0.69 +/- 0.08 (0.83 +/- 0.07) for the lung and lesion segmentations, respectively. The output of the segmentation software was then used to assess the percentage of infected lungs, obtaining a Mean Absolute Error (MAE) equal to 2%.

Quantification of pulmonary involvement in COVID-19 pneumonia: an upgrade of the LungQuant software for lung CT segmentation

Lizzi, Francesca;Fantacci, Maria Evelina;
2023-01-01

Abstract

Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-19 pneumonia. Here, we present an improved version of the LungQuant automatic segmentation software (LungQuant v(2)), which implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19 pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net(1)) outputs the mask of the lungs, and the final one (U-net(2)) generates the mask of the COVID-19 lesions. With respect to the previous version (LungQuant v1), three main improvements are introduced: the BB-net, a new term in the loss function in the U-net for lesion segmentation and a post-processing procedure to separate the right and left lungs. The three DNNs were optimized, trained and tested on publicly available CT scans. We evaluated the system segmentation capability on an independent test set consisting of ten fully annotated CT scans, the COVID-19-CT-Seg benchmark dataset. The test performances are reported by means of the volumetric dice similarity coefficient (vDSC) and the surface dice similarity coefficient (sDSC) between the reference and the segmented objects. LungQuant v2 achieves a vDSC (sDSC) equal to 0.96 +/- 0.01 (0.97 +/- 0.01) and 0.69 +/- 0.08 (0.83 +/- 0.07) for the lung and lesion segmentations, respectively. The output of the segmentation software was then used to assess the percentage of infected lungs, obtaining a Mean Absolute Error (MAE) equal to 2%.
2023
Lizzi, Francesca; Postuma, Ian; Brero, Francesca; Cabini, Raffaella Fiamma; Fantacci, Maria Evelina; Lascialfari, Alessandro; Oliva, Piernicola; Rinal...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1242328
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact