The present study focuses on the sources and spatial distribution of potentially toxic elements (PTEs) and organic pollutants in water, canal bed sediment, and soil in the Versiliana urban park, an inclusive green area near the coast in the densely populated Versilia Plain of Tuscany. Surface water and bed sediments from canals crossing the urban park were collected at 10 stations during four different surveys to account for hydrological seasonality. Groundwater was collected in a survey through 10 piezometers. Eleven shallow soil samples were also collected, with the aim of evaluating the potential release of pollutants. Groundwater ranged from Ca-HCO3, to NaCl, CaCl2, and Na-HCO3 water types, indicating conservative mixing and cation exchange processes during seawater intrusion. Most waters from canals belonged to the Ca-HCO3 hydrofacies; a salinization shift, due to hydraulic connection with saline groundwater and soil sea salt dissolution, is observed. The concentration of most PTEs in groundwater and canal water is below Italian regulatory thresholds, with the only exception being As, which exceeds the legal limit in some samples. In most sediments, Ni, Cr, Zn, and As exceed the threshold effect concentration, and in some cases, the probable effect concentration. Geogenic PTE sources are attributed to metalliferous mineralization that characterizes the upstream Versilia River basin catchment. However, local PTE inputs from vehicular emissions and local industrial activities have been highlighted. Arsenic in sediments originated from geogenic sources and from arsenical pesticides, as indicated by the analysis of organic compounds, highlighting the legacy of the use of organic pesticides that have settled in bed sediments, in particular malathion and metalaxyl. The arsenic risk-based screening level in soil is lower compared with the regulatory threshold and with the measured concentration.
Environmental Assessment of a Heritage Forest Urban Park on the Densely Populated Coast of Versilia, Italy
Roberto GIANNECCHINIPrimo
;Lisa GhezziSecondo
;SIMONE ARRIGHI;SILVIA FORNASARO;STEFANIA GIANNARELLI;Alessio PardiniPenultimo
;Riccardo Petrini
Ultimo
2025-01-01
Abstract
The present study focuses on the sources and spatial distribution of potentially toxic elements (PTEs) and organic pollutants in water, canal bed sediment, and soil in the Versiliana urban park, an inclusive green area near the coast in the densely populated Versilia Plain of Tuscany. Surface water and bed sediments from canals crossing the urban park were collected at 10 stations during four different surveys to account for hydrological seasonality. Groundwater was collected in a survey through 10 piezometers. Eleven shallow soil samples were also collected, with the aim of evaluating the potential release of pollutants. Groundwater ranged from Ca-HCO3, to NaCl, CaCl2, and Na-HCO3 water types, indicating conservative mixing and cation exchange processes during seawater intrusion. Most waters from canals belonged to the Ca-HCO3 hydrofacies; a salinization shift, due to hydraulic connection with saline groundwater and soil sea salt dissolution, is observed. The concentration of most PTEs in groundwater and canal water is below Italian regulatory thresholds, with the only exception being As, which exceeds the legal limit in some samples. In most sediments, Ni, Cr, Zn, and As exceed the threshold effect concentration, and in some cases, the probable effect concentration. Geogenic PTE sources are attributed to metalliferous mineralization that characterizes the upstream Versilia River basin catchment. However, local PTE inputs from vehicular emissions and local industrial activities have been highlighted. Arsenic in sediments originated from geogenic sources and from arsenical pesticides, as indicated by the analysis of organic compounds, highlighting the legacy of the use of organic pesticides that have settled in bed sediments, in particular malathion and metalaxyl. The arsenic risk-based screening level in soil is lower compared with the regulatory threshold and with the measured concentration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


