A three-dimensional model of the AT1 receptor was constructed by means of a homology modeling procedure, using the X-ray structure of bovine rhodopsin as the initial template and taking into account the available site-directed mutagenesis data. The docking of losartan and its active metabolite EXP3174, followed by 1 ns of molecular dynamics (MD) simulation inserted into the phospholipid bilayer, suggested a different binding orientation for these antagonists from those previously proposed. Furthermore, the docking of several non-peptide antagonists was used as an alignment tool for the development of a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, and the good results confirmed our binding hypothesis and the reliability of the model.
Proposal of a new binding orientation for non-peptide AT1 antagonists: Homology modeling, docking and three-dimensional quantitative structure-activity relationship analysis
TUCCINARDI, TIZIANO;CALDERONE, VINCENZO;RAPPOSELLI, SIMONA;MARTINELLI, ADRIANO
2006-01-01
Abstract
A three-dimensional model of the AT1 receptor was constructed by means of a homology modeling procedure, using the X-ray structure of bovine rhodopsin as the initial template and taking into account the available site-directed mutagenesis data. The docking of losartan and its active metabolite EXP3174, followed by 1 ns of molecular dynamics (MD) simulation inserted into the phospholipid bilayer, suggested a different binding orientation for these antagonists from those previously proposed. Furthermore, the docking of several non-peptide antagonists was used as an alignment tool for the development of a three-dimensional quantitative structure-activity relationship (3D-QSAR) model, and the good results confirmed our binding hypothesis and the reliability of the model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.