Imagine you are pushing your finger against a deformable, compliant object. The change in the area of contact can provide an estimate of the relative displacement of the finger, such that the larger is the area of contact, the larger is the displacement. Does the human haptic system use this as a cue for estimating the displacement of the finger with respect to the external object? Here we conducted a psychophysical experiment to test this hypothesis. Participants compared the passive displacement of the index finger between a reference and a comparison stimulus. The compliance of the contacted object changed between the two stimuli, thus producing a different area-displacement relationship. In accordance with the hypothesis, the modulation of the area-displacement relationship produced a bias in the perceived displacement of the finger.
A change in the fingertip contact area induces an illusory displacement of the finger
BIANCHI, MATTEO;SERIO, ALESSANDRO;Fani, S.;BICCHI, ANTONIO
2014-01-01
Abstract
Imagine you are pushing your finger against a deformable, compliant object. The change in the area of contact can provide an estimate of the relative displacement of the finger, such that the larger is the area of contact, the larger is the displacement. Does the human haptic system use this as a cue for estimating the displacement of the finger with respect to the external object? Here we conducted a psychophysical experiment to test this hypothesis. Participants compared the passive displacement of the index finger between a reference and a comparison stimulus. The compliance of the contacted object changed between the two stimuli, thus producing a different area-displacement relationship. In accordance with the hypothesis, the modulation of the area-displacement relationship produced a bias in the perceived displacement of the finger.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.