This paper deals with a dynamic analysis on a low concentration solar power plants coupled with Organic Rankine Cycles (ORC), which can be an alternative to PV systems because of their capability of providing a smoother electricity production due to their thermal inertia. At least within certain restraints, moreover they are able to exploit diffused solar radiation. The dynamic model of a plant with static Compound Parabolic Collectors and an ORC system, using a rotary volumetric expander, was developed using the simulation tool AMESim. All the main components of the plant are modelled: solar collectors field, heat transfer fluid circuit, heat exchangers and the ORC system. The plant response to the radiation of different days was analyzed to quantify the daily production and the trend of various plant parameters. Real ambient conditions were employed for the simulations by using data obtained by historical series. The results showed that the employment of a volumetric expansion device with variable rotating speed allows the plant to operate at different radiations and ambient temperatures without the need of any storage system or external heat sources. Results can be extended to other applications, such as low temperature waste heat recovery or geothermal systems.

Dynamic modelling of a low-concentration solar power plant: A control strategy to improve flexibility

ANTONELLI, MARCO;BACCIOLI, ANDREA;FRANCESCONI, MARCO;DESIDERI, UMBERTO
2016-01-01

Abstract

This paper deals with a dynamic analysis on a low concentration solar power plants coupled with Organic Rankine Cycles (ORC), which can be an alternative to PV systems because of their capability of providing a smoother electricity production due to their thermal inertia. At least within certain restraints, moreover they are able to exploit diffused solar radiation. The dynamic model of a plant with static Compound Parabolic Collectors and an ORC system, using a rotary volumetric expander, was developed using the simulation tool AMESim. All the main components of the plant are modelled: solar collectors field, heat transfer fluid circuit, heat exchangers and the ORC system. The plant response to the radiation of different days was analyzed to quantify the daily production and the trend of various plant parameters. Real ambient conditions were employed for the simulations by using data obtained by historical series. The results showed that the employment of a volumetric expansion device with variable rotating speed allows the plant to operate at different radiations and ambient temperatures without the need of any storage system or external heat sources. Results can be extended to other applications, such as low temperature waste heat recovery or geothermal systems.
2016
Antonelli, Marco; Baccioli, Andrea; Francesconi, Marco; Desideri, Umberto
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S096014811630355X-main.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
DM_RENE_rev.pdf

accesso aperto

Descrizione: Documento
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 238.16 kB
Formato Adobe PDF
238.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/793891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact