Over the past several decades, there has been a resurgence of interest in industrial hemp (Cannabis sativa L., Cannabaceae) cultivation. Besides fibre, seeds and oil, hemp contains high quantity of essential oil (EO). Hop (Humulus lupulus L., Cannabaceae) is a high-climbing, perennial vine, largely utilized in the brewing industry to add flavour and bitterness to beer. While it is known that hop also contains α- and ß-acids, and terpenes that have been found to be toxic, anti-feedant, and repellent for insects and mites, little is known about the bioactivity against problematic species of the hemp EO. In this study, the chemical composition of the EOs from C. sativa and H. lupulus was evaluated by GC-MS, and their acute toxicity was assessed against the Asian tiger mosquito Aedes albopictus (Skuse) (Diptera Culicidae) and, the freshwater bladder snail Physella acuta (Draparnaud) (Mollusca Physidae), two problematic invasive species. Furthermore, we evaluated the toxicity of both EOs against a non-target insect, the mayfly Cloeon dipterum L. (Ephemeroptera Baetidae). Both EOs were toxic against the three tested species. The most effective EO was the C. sativa, able to kill 100% of P. acuta snails starting from 100 μL L-1. C. sativa LC50 were 301.560, 282.174 and, 35.370 μL L-1, while H. lupulus LC50 were 330.855, 219.787 and, 118.653 μL L-1 against A. albopictus, C. dipterum and P. acuta, respectively. Relative median potency analysis showed that the C. sativa EO was more toxic than H. lupulus against A. albopictus and P. acuta, while H. lupulus was more toxic than C. sativa EO against C. dipterum. The most susceptible species to the two EOs was P. acuta, while A. albopictus resulted the least susceptible one.
Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta
BEDINI, STEFANO;FLAMINI, GUIDOCo-primo
;ASCRIZZI, ROBERTA;BENELLI, GIOVANNI;CONTI, BARBARA
2016-01-01
Abstract
Over the past several decades, there has been a resurgence of interest in industrial hemp (Cannabis sativa L., Cannabaceae) cultivation. Besides fibre, seeds and oil, hemp contains high quantity of essential oil (EO). Hop (Humulus lupulus L., Cannabaceae) is a high-climbing, perennial vine, largely utilized in the brewing industry to add flavour and bitterness to beer. While it is known that hop also contains α- and ß-acids, and terpenes that have been found to be toxic, anti-feedant, and repellent for insects and mites, little is known about the bioactivity against problematic species of the hemp EO. In this study, the chemical composition of the EOs from C. sativa and H. lupulus was evaluated by GC-MS, and their acute toxicity was assessed against the Asian tiger mosquito Aedes albopictus (Skuse) (Diptera Culicidae) and, the freshwater bladder snail Physella acuta (Draparnaud) (Mollusca Physidae), two problematic invasive species. Furthermore, we evaluated the toxicity of both EOs against a non-target insect, the mayfly Cloeon dipterum L. (Ephemeroptera Baetidae). Both EOs were toxic against the three tested species. The most effective EO was the C. sativa, able to kill 100% of P. acuta snails starting from 100 μL L-1. C. sativa LC50 were 301.560, 282.174 and, 35.370 μL L-1, while H. lupulus LC50 were 330.855, 219.787 and, 118.653 μL L-1 against A. albopictus, C. dipterum and P. acuta, respectively. Relative median potency analysis showed that the C. sativa EO was more toxic than H. lupulus against A. albopictus and P. acuta, while H. lupulus was more toxic than C. sativa EO against C. dipterum. The most susceptible species to the two EOs was P. acuta, while A. albopictus resulted the least susceptible one.File | Dimensione | Formato | |
---|---|---|---|
Bedini et al_Cannabis_ICP.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
402.03 kB
Formato
Adobe PDF
|
402.03 kB | Adobe PDF | Visualizza/Apri |
Cannabis sativa_version of record.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
576.62 kB
Formato
Adobe PDF
|
576.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.