The development of estrogen receptorβ (ERβ)-selective agonists represents a therapeutic strategy against several kinds of cancers, but the high homology between the two receptor subtypes, ERα and ERβ, makes the achievement of this goal very challenging. In the past, we developed salicylaldoxime- and salicylketoxime-based molecules that proved to bind well to ERβ. In this paper, further structural evolution of the salicylketoximes is presented: two of the newly synthesized five-membered cyclic ketoximes bind with nanomolar affinities to ERβ, and they show selectivity for this subtype over ERα. Their agonist character was confirmed by cell-free coactivator recruitment assays, in which we demonstrated the ability of these compounds to form an active complex with ERβ capable of recruiting coactivator proteins; this indicated their efficacy as agonists. Finally, their potency and selectivity for ERβ binding were rationalized by molecular-modeling studies.
Cyclic Ketoximes as Estrogen Receptorβ Selective Agonists
GRANCHI, CARLOTTA;LAPILLO, MARGHERITA;TUCCINARDI, TIZIANO;MINUTOLO, FILIPPO
2016-01-01
Abstract
The development of estrogen receptorβ (ERβ)-selective agonists represents a therapeutic strategy against several kinds of cancers, but the high homology between the two receptor subtypes, ERα and ERβ, makes the achievement of this goal very challenging. In the past, we developed salicylaldoxime- and salicylketoxime-based molecules that proved to bind well to ERβ. In this paper, further structural evolution of the salicylketoximes is presented: two of the newly synthesized five-membered cyclic ketoximes bind with nanomolar affinities to ERβ, and they show selectivity for this subtype over ERα. Their agonist character was confirmed by cell-free coactivator recruitment assays, in which we demonstrated the ability of these compounds to form an active complex with ERβ capable of recruiting coactivator proteins; this indicated their efficacy as agonists. Finally, their potency and selectivity for ERβ binding were rationalized by molecular-modeling studies.File | Dimensione | Formato | |
---|---|---|---|
2016_6.pdf
solo utenti autorizzati
Descrizione: reprint
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
nihms800401_Author manuscript.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.